Ir al contenido

Documat


Existence and Multiplicity of Normalized Solutions with Positive Energy for the Kirchhoff Equation

  • Lin Xu [1] ; Feng Li [1] ; Qilin Xie [1]
    1. [1] Guangdong University of Technology

      Guangdong University of Technology

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 23, Nº 3, 2024
  • Idioma: inglés
  • DOI: 10.1007/s12346-024-01001-3
  • Enlaces
  • Resumen
    • In this paper, we investigate the existence and multiplicity of normalized solutions for the following Kirchhoff equation, − a + b R3 |∇u| 2dx u − λu = f (u), in R3, R3 |u| 2dx = c, (P) where a, b, c are positive constants and λ ∈ R is an unknown parameter that appears as a Lagrange multiplier. Two normal solutions, manifesting as a local minimizer or mountain pass solution, have been obtained under the mass subcritical conditions on the nonlinearity f and some suitable mass c. Additionally, we employ the Symmetric Mountain Pass Theorem to establish the multiplicity of normalized solutions for problem (P). To the best of our knowledge, we extend and complement the research success in the Kirchhoff equation for a general nonlinearity with weaker subcritical mass growth.

  • Referencias bibliográficas
    • 1. Lions, J.L.: On some questions in boundary value problems of mathematical physics. North-Holl. Math. Stud. 30, 284–346 (1978)
    • 2. Alves, C.O., Corrêa, F., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93...
    • 3. He, X.M., Zou, W.M.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. Theory Methods Appl. 70, 1407–1414...
    • 4. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3. J. Differ. Equ. 252, 1813–1834...
    • 5. Liu, J., Liao, J.F., Tang, C.L.: Positive solutions for Kirchhoff-type equations with critical exponent in RN . J. Math. Anal. Appl. 429,...
    • 6. Lei, C.Y., Liao, J.F., Tang, C.L.: Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents....
    • 7. Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in R3. J. Funct....
    • 8. He, Y., Li, G.B.: Standing waves for a class of Kirchhoff type problems in R3 involving critical sobolev exponents. Calc. Var. Partial....
    • 9. Li, G.B., Ye, H.Y.: On the concentration phenomenon of L2-subcritical constrained minimizers for a class of Kirchhoff equations with potentials....
    • 10. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)
    • 11. Massar, M., Talbi, M.: Radial solutions for a fractional Kirchhoff type equation in RN , Indian Journal of. Pure Appl. Math. 52, 897–902...
    • 12. Massar, M.: Existence results for an anisotropic variable exponent Kirchhoff-type problem. Complex Var. Elliptic Equ. 69, 234–251 (2024)
    • 13. Ye, H.Y.: The sharp existence of constrained minimizers for a class of nonlinear Kirchhoff equations. Mat. Methods Appl. Sci. 38, 2663–2679...
    • 14. Qi, S.J., Zou, W.M.: Exact number of positive solutions for the Kirchhoff equation. SIAM J. Math. Anal. 54, 5424–5446 (2022)
    • 15. Ye, H.Y.: The existence of normalized solutions for L2-critical constrained problems related to Kirchhoff equations. Z. Angew. Math. Phys....
    • 16. Luo, X., Wang, Q.F.: Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3. Nonlinear...
    • 17. Xie, W.H., Chen, H.B.: Existence and multiplicity of normalized solutions for the nonlinear Kirchhoff type problems. Comput. Math. Appl....
    • 18. He, Q.H., Lv, Z.Y., Tang, Z.W.: The existence of normalized solutions to the Kirchhoff equation with potential and sobolev critical nonlinearities....
    • 19. Zeng, X.Y., Zhang, J.J., Zhang, Y.M., Zhong, X.X.: Positive normalized solution to the Kirchhoff equation with general nonlinearities,...
    • 20. Ye, H.Y.: The existence and nonexistence of global L2-constrained minimizers for Kirchhoff equations with L2-subcritical general nonlinearity....
    • 21. Chen, S.T., R˘adulescu, V.D., Tang, X.H.: Normalized solutions of nonautonomous Kirchhoff equations: sub-and super-critical cases. Appl....
    • 22. Hu, J.Q., Mao, A.M.: Normalized solutions to the Kirchhoff equation with a perturbation term. Differ. Integral Equ. 36, 289–312 (2023)
    • 23. Feng, X.J., Liu, H.D., Zhang, Z.T.: Normalized solutions for Kirchhoff type equations with combined nonlinearities: the sobolev critical...
    • 24. Carrião, P.C., Miyagaki, O.H., Vicente, A.: Normalized solutions of Kirchhoff equations with critical and subcritical nonlinearities:...
    • 25. Jeanjean, L., Lu, S.S.: Normalized solutions with positive energies for a coercive problem and application to the cubic-quintic nonlinear...
    • 26. Stuart, C. A.: Bifurcation from the continuous spectrum in the L2 theory of elliptic equations on RN . Recent Methods Nonlinear Anal....
    • 27. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1982)
    • 28. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in R3. J. Differ. Equ. 257,...
    • 29. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
    • 30. Hirata, J., Tanaka, K.: Nonlinear scalar field equations with L2 constraint: mountain pass and symmetric mountain pass approaches. Adv....
    • 31. Ikoma, N., Tanaka, K.: A note on deformation argument for L2 normalized solutions of nonlinear Schrödinger equations and systems. Adv....
    • 32. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations, II existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82,...
    • 33. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. Annales de l’Institut...
    • 34. Willem, M.: Minimax theorems. Birkhauser, Switzerland (1996)
    • 35. Jeanjean, L., Lu, S.S.: A mass supercritical problem revisited. Calc. Var. Partial. Differ. Equ. 59, 174 (2020)
    • 36. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var....
    • 37. Mari¸s, M.: On the symmetry of minimizers. Arch. Ration. Mech. Anal. 2, 311–330 (2008)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno