Ir al contenido

Documat


Rogue Waves on the Periodic Background for the Complex Coupled Integrable Dispersionless Equation

  • Jian Chang [1] ; Zhaqilao [1]
    1. [1] Inner Mongolia Normal University

      Inner Mongolia Normal University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates rogue wave solutions on the background of the Jacobian elliptic functions for the complex coupled integrable dispersionless equation. Using the travelling wave transformation, we derive Jacobian elliptic function solutions for this equation. Based on the nonlinearization of the Lax pair, we determine the values of the spectral parameters. We construct the linearly independent and non-periodic solutions of the Lax pair with the same spectral parameter. We take the Jacobian elliptic function solutions as the seed solutions, and substitute the linearly independent and non-periodic solutions into the Darboux transformation to obtain the rogue wave solutions on the Jacobian elliptic functions dn and cn backgrounds. The dynamic behaviours and characteristics of these solutions are explored through three-dimensional plots and transverse plots. For both the rogue dn-periodic wave and the rogue cn-periodic wave, when the elliptic modulus k increases, we observe the following distinct changes.

      For the rogue dn-periodic wave, the amplitude of the rogue wave decreases while the amplitude of the periodic background wave increases, and the period becomes larger.

      For the rogue cn-periodic wave, both the amplitude of the rogue wave and that of the periodic background increase, and the period also becomes larger.

  • Referencias bibliográficas
    • 1. Zhang, Y., Lü, X.: Data-driven solutions and parameter discovery of the extended higher-order nonlinear Schrödinger equation in optical...
    • 2. Kumar, S., Dhiman, S.K.: Exploring cone-shaped solitons, breather, and lump-forms solutions using the lie symmetry method and unified approach...
    • 3. Kumar, S., Rani, S., Mann, N.: Analytical soliton solutions to a (2+1)-dimensional variable coefficients graphene sheets equation using...
    • 4. Kumar, S., Kukkar, A.: Dynamics of several optical soliton solutions of a (3+1)-dimensional nonlinear Schrödinger equation with parabolic...
    • 5. Priya, N.V., Senthilvelan, M., Lakshmanan, M.: Akhmediev breathers, Ma solitons, and general breathers from rogue waves: A case study in...
    • 6. Li, Z.D., Wang, Y.Y., He, P.B.: Formation mechanism of asymmetric breather and rogue waves in pair-transition-coupled nonlinear Schrödinger...
    • 7. Mohan, B., Kumar, S.: Rogue-wave structures for a generalized (3+1)-dimensional nonlinear wave equation in liquid with gas bubbles....
    • 8. Kumar, S., Mohan, B.: Bilinearization and new center-controlled N-rogue solutions to a (3+1)- dimensional generalized KdV-type equation...
    • 9. Mohan, N., Kumar, S.: In-depth analysis and exploration of rogue wave, lump wave, and different solitonic patterns to the Painlevé-integrable...
    • 10. Ma, W.X.: Lump waves and their dynamics of a spatial symmetric generalized KP model. Rom. Rep. Phys. 76, 108 (2024). https://doi.org/10.59277/RomRepPhys.2024.76.108
    • 11. Chu, J.Y., Liu, Y.Q., Ma, W.X.: Integrability and multiple-rogue and multi-soliton wave solutions of the (3+1)-dimensional Hirota-Satsuma-Ito...
    • 12. Lü, X., Zhang, L.L., Ma, W.X.: Oceanic shallow-water description with (2+1)-dimensional generalized variable-coefficient Hirota-Satsuma-Ito...
    • 13. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear...
    • 14. Fokas, A.S., Ablowitz, M.J.: The inverse scattering transform for the Benjamin-Ono equation-A pivot to multidimensional problems. Stud....
    • 15. Geng, X.G., Wu, J.P.: Riemann-Hilbert approach and N-soliton solutions for a generalized SasaSatsuma equation. Wave Motion 60, 62–72 (2016)....
    • 16. Liu, N., Guo, B.L.: Solitons and rogue waves of the quartic nonlinear Schrödinger equation by RiemannHilbert approach. Nonlinear Dyn....
    • 17. Ma, W.X.: Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies. Nonlinear Anal.: Real World Appl....
    • 18. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)...
    • 19. Hirota, R.: Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons. J. Phys. Soc. Japan 33, 1456–1458...
    • 20. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)
    • 21. Mohan, B., Kumar, S., Kumar, R.: On investigation of kink-solitons and rogue waves to a new integrable (3+1)-dimensional KdV-type...
    • 22. Matveev, V.B., Salle, M.A.: Daboux Transformation and Soliton. Springer, Berlin (1991)
    • 23. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev....
    • 24. Ma, W.X.: Soliton solutions to Sasa-Satsuma-type modified Korteweg-de Vries equations by binary Darboux transformations. Mathematics 12(23),...
    • 25. Cheng, L., Zhang, Y., Ma, W.X.: An extended (2+1)-dimensional modified Korteweg-de VriesCalogero- Bogoyavlenskii-Schiff equation:...
    • 26. Yan, X.W., Tian, S.F., Dong, M.J., Zou, L.: Bäcklund transformation, rogue wave solutions and interaction phenomena for a (3+1)-dimensional...
    • 27. Gao, D., Ma, W.X., Lü, X.: Wronskian solution, Bäcklund transformation and Painlevé analysis to a (2+1)-dimensional Konopelchenko-Dubrovsky...
    • 28. Zhang, L.L., Lü, X., Zhu, S.Z.: Painlevé analysis, Bäcklund transformation and soliton solutions of the (2+1)-dimensional variable-coefficient...
    • 29. Chatziafratis, A., Ozawa, T., Tian, S.F.: Rigorous analysis of the unified transform method and longrange instabilities for the inhomogeneous...
    • 30. Li, Z.Q., Tian, S.F., Yang, J.J.: On the soliton resolution and the asymptotic stability of N-soliton solution for the Wadati-Konno-Ichikawa...
    • 31. Li, Z.Q., Tian, S.F., Yang, J.J.: Soliton resolution for the Wadati-Konno-Ichikawa equation with weighted Sobolev initial data. Ann. Henri...
    • 32. Li, Z.Q., Tian, S.F., Yang, J.J., Fan, E.G.: Soliton resolution for the complex short pulse equation with weighted Sobolev initial data...
    • 33. Müller, P., Garrett, C., Osborne, A.: Rogue waves. Oceanography 18(3), 66–75 (2005) http://www. soest.hawaii.edu/PubServices/Muller_Rogue_Wave.pdf
    • 34. Yeom, D.I., Eggleton, B. J.: Photonics: Rogue waves surface in light. Nature 450, 953–954 (2007) https://www.nature.com/articles/450953a#Fig1
    • 35. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007) https://www.nature.com/articles/nature06402
    • 36. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80, 033610 (2009) https://journals.aps.org/pra/abstract/10.1103/PhysRevA.80.033610
    • 37. Ganshin, A.N., Efimov, V.B., Kolmakov, G.V., Mezhov-Deglin, L.P., McClintock, P.V.E.: Observation of an inverse energy cascade in developed...
    • 38. Moslem, W.M., Shukla, P.K., Eliasson, B.: Surface plasma rogue waves. Europhys. Lett. Assoc. 96, 25002 (2011) http://iopscience.iop.org/0295-5075/96/2/25002
    • 39. Stenflo, L., Marklund, M.: Rogue waves in the atmosphere. J. Plasma Phys. 76, 293–295 (2010). https:// doi.org/10.1017/S0022377809990481
    • 40. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947–949 (2010). https://doi.org/10.1088/ 0253-6102/54/5/31
    • 41. Li, R.M., Geng, J.R., Geng, X.G.: Breather and rogue-wave solutions of the semi-discrete and continuous nonlinear Schrödinger equations...
    • 42. Geng, X.G., Li, R.M., Xue, B.: A vector Geng–Li model: New nonlinear phenomena and breathers on periodic background waves. Phys. D 434,...
    • 43. Li, R.M., Geng, X.G.: Rogue waves and breathers of the derivative Yajima-Oikawa long wave-short wave equations on theta-function backgrounds....
    • 44. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)....
    • 45. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955–1980 (2018). https://doi.org/10.1088/1361-6544/aaa2da
    • 46. Zhang, H.Q., Gao, X., Pei, Z.J., Chen, F.: Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)....
    • 47. Chen, J.B., Pelinovsky, D.E.: Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation....
    • 48. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020) https://www.sciencedirect.com/science/article/pii/S0893965919304732?via
    • 49. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave...
    • 50. Gao, X., Zhang, H.Q.: Rogue waves for the Hirota equation on the Jacobi elliptic cn-function background. Nonlinear Dyn. 101, 1159–1168...
    • 51. Zhang, H.Q., Chen, F.: Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Chaos 31(2), 023129...
    • 52. Wang, Z., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave...
    • 53. Wei, C.C., Tian, B., Zhao, X., Chen, Y.Q.: Jacobian-elliptic-function and rogue-periodic-wave solutions of a fifth-order nonlinear Schrödinger...
    • 54. Shi, W., Zhaqilao: Rogue waves of the sixth-order nonlinear Schrödinger equation on a periodic background. Commun. Theor. Phys. 74, 055001...
    • 55. Jiang, D.Z., Zhaqilao: Solitons, breathers and periodic rogue waves for the variable-coefficient seventhorder nonlinear Schrödinger equation....
    • 56. Sun, H.Y., Zhaqilao: Rogue waves of the AB system on the periodic background. Int. J. Mod. Phys. B 36, 2250196 (2022) https://doi.org/10.1142/S021797922250196X
    • 57. Sun, H.Y., Zhaqilao: Rogue waves, modulation instability of the (2+1)-dimensional complex modified Korteweg-de Vries equation on the...
    • 58. Zhaqilao, Wurile, Bao, X.: Rogue waves on the periodic wave background in the KadomtsevPetviashvili I equation. Nonlinear Dyn. 111, 18255–18266...
    • 59. Wurile, Taogetusang, Li, C.X., Zhaqilao: Rogue periodic waves and hybrid nonlinear waves in the (2+1)-dimensional CDGKS equation....
    • 60. Zhen, Y.P.: Rogue waves on the periodic background in the extended mKdV equation. Eur. Phys. J. B 96, 20 (2023). https://doi.org/10.1140/epjb/s10051-023-00489-z
    • 61. Tang, W., Yu, G.F., Shen, S.F.: Rogue periodic waves of the short pulse equation and the coupled integrable dispersionless equation. Wave...
    • 62. Zhong, Y.D., Zhang, Y.: Rogue waves on the periodic background of the Kuralay-II equation. Wave Motion 128, 103310 (2024). https://doi.org/10.1016/j.wavemoti.2024.103310
    • 63. Wang, X.H., Zhaqilao: Rogue waves for the (2+1)-dimensional Myrzakulov-Lakshmanan-IV equation on a periodic background. Commun. Theor....
    • 64. Chang, J., Zhaqilao: Rogue waves on the periodic background for a higher-order nonlinear SchrödingerMaxwell-Bloch system. Wave Motion...
    • 65. Konno, K., Oono, H.: New coupled integrable dispersionless equations. J. Phys. Soc. Japan 63(2), 377–378 (1994). https://doi.org/10.1143/JPSJ.63.377
    • 66. Kotlyarov, V.P.: On equations gauge equivalent to the sine-Gordon and Pohlmeyer-Lund-Regge equations. J. Phys. Soc. Japan 63(10), 3535–3537...
    • 67. Konno, K.: Integrable coupled dispersionless equations. Appl. Anal. 57, 209–220 (1995). https://doi. org/10.1080/00036819508840347
    • 68. Shen, S.F., Feng, B.F., Ohta, Y.: From the real and complex coupled dispersionless equations to the real and complex short pulse equations....
    • 69. Vinet, L., Yu, G.F.: Discrete analogues of the generalized coupled integrable dispersionless equations. J. Phys. A: Math. Theor. 46, 175205...
    • 70. Kakuhata, H., Konno, K.: Loop soliton solutions of string interacting with external field. J. Phys. Soc. Japan 68, 757–762 (1999). https://doi.org/10.1143/jpsj.68.757
    • 71. Khalique, C.M.: Exact solutions and conservation laws of a coupled integrable dispersionless system. Filomat 26(5), 957–964 (2012). https://doi.org/10.2298/FIL1205957K
    • 72. Konno, K., Kakuhata, H.: Interaction among growing, decaying and stationary solitons for coupled integrable dispersionless equations....
    • 73. Hassan, M.: Darboux transformation of the generalized coupled dispersionless integrable system. J. Phys. A: Math. Theor. 42, 065203 (2009)....
    • 74. Dai, C.Q., Yang, Q., Wang, Y.Y.: New exact solutions of (1+1)-dimensional coupled integrable dispersionless system. Commun. Theor....
    • 75. Liu, S.K., Zhao, Q., Liu, S.D.: The periodic solutions for coupled integrable dispersionless equations. Chin. Phys. B 20, 040202 (2011)....
    • 76. Wang, P., Tian, B., Liu, W.J., Qu, Q.X., Jiang, Y.: Conservation laws and analytic soliton solutions for coupled integrable dispersionless...
    • 77. Kakuhata, H., Konno, K.: Rotating loop soliton of the coupled dispersionless equations. Theor. Math. Phys. 133(3), 1675–1683 (2002). https://doi.org/10.1023/A:1021366309313
    • 78. Kuetche, V.K., Bouetou, T.B., Kofane, T.C.: On exact N-loop soliton solution to nonlinear coupled dispersionless evolution equations....
    • 79. Zhaqilao: On Nth-order rogue wave solution to nonlinear coupled dispersionless evolution equations. Phys. Lett. A 376(45), 3121–3128 (2012)....
    • 80. Dong, H.N., Zhaqilao: Hybrid rogue wave and breather solutions for the nonlinear coupled dispersionless evolution equations. Wave Motion...
    • 81. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Integrable Systems: Theory and Their Applications to Geometry. Springer, Dordrecht...
    • 82. Ma, W.X.: Darboux transformations for a Lax integrable system in 2n dimensions. Lett. Math. Phys. 39, 33–49 (1997) https://link.springer.com/article/10.1007/s11005-997-3049-3
    • 83. Zhou, R.G.: Nonlinearization of spectral problems of the nonlinear Schrödinger equation and the realvalued modified Korteweg-de Vries...
    • 84. Zhou, R.G.: Finite-dimensional integrable hamiltonian systems related to the nonlinear Schrödinger equation. Stud. Appl. Math. 123(4),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno