Ir al contenido

Documat


Jacobian-Elliptic-Function and Rogue-Periodic-Wave Solutions of a Fifth-Order Nonlinear Schrödinger Equation in an Optical Fiber

  • Autores: Cheng-Cheng Wei, Bo Tian, Xin Zhao, Yu-Qi Chen
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 1, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Optical fiber communication becomes the main research direction in optical networking, computing, telecommunications and data communication. In an optical fiber, a fifth-order nonlinear Schrödinger equation describing the propagation of ultrashort optical pulses is studied in this paper. We give the Jacobian-elliptic-function solutions of that equation as the seed solutions. Based on the periodic background, we combine the nonlinearization of the spectral problem with the Darboux-transformation method to derive the rogue-periodic-wave solutions. When the coefficient α2 in that equation increases, the period and maximum amplitude of the onefold rogue-dn-periodic wave remain unchanged, while the minimum amplitude of the onefold rogue-dn-periodic wave rises; when the coefficient α1 or α3 in that equation increases, the maximum amplitude of the onefold rogue-dn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-dn-periodic wave decreases, while the period of the onefold rogue-dn-periodic becomes smaller. The conclusion of the twofold roguecn-periodic wave is the same as that of the onefold rogue-dn-periodic wave. When the coefficient α1 in that equation increases, the maximum amplitude of the onefold rogue-cn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-cn-periodic wave rises, while the period of the onefold rogue-cn-periodic wave becomes smaller; when the coefficient α2 in that equation increases, the period and maximum amplitude of the onefold rogue-cn-periodic wave remain unchanged, while the minimum amplitude of the onefold rogue-cn-periodic wave decreases; when the coefficient α3 in that equation increases, the maximum amplitude of the onefold rogue-cn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-cn-periodic wave decreases, while the period of the onefold rogue-cn-periodic wave becomes smaller.

  • Referencias bibliográficas
    • 1. Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)
    • 2. Rajan, M.M., Bhuvaneshwari, B.: Controllable soliton interaction in three mode nonlinear optical fiber. Optik 175, 39 (2018)
    • 3. Rajan, M.M., Mahalingam, A., Uthayakumar, A.: Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation....
    • 4. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient...
    • 5. Jia, H.X., Zuo, D.W., Tian, X.S., Guo, Z.F.: Characteristics of coexisting rogue wave and breather in vector nonlinear Schrödinger system....
    • 6. Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Zahed, H.: Dispersive of propagation wave solutions to unidirectional shallow water...
    • 7. Seadawy, A.R., Ali, A., Albarakati, W.A.: Analytical wave solutions of the (2 + 1)-dimensional first integro-differential Kadomtsev–Petviashivili...
    • 8. Seadawy, A.R., Lu, D., Iqbal, M.: Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir...
    • 9. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized...
    • 10. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)
    • 11. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified...
    • 12. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for...
    • 13. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant...
    • 14. Ali, I., Seadawy, A.R., Rizvi, S.T.R., Younis, M., Ali, K.: Conserved quantities along with Painlevé analysis and optical solitons for...
    • 15. Rizvi, S.T.R., Seadawy, A.R., Ashraf, F., Younis, M., Iqbal, H., Baleanu, D.: Lump and interaction solutions of a geophysical Korteweg–de...
    • 16. Veni, S.S., Rajan, M.S.M., Vithya, A.: Controllable phase shift of optical soliton through nonlinear tunneling in a dual mode optical...
    • 17. Ali, K.K., Wazwaz, A.M., Osman, M.S.: Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical...
    • 18. Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 241, 167061 (2021)
    • 19. Jia, H.X., Zuo, D.W., Li, X.H., Xiang, X.S.: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation....
    • 20. Xiang, X.S., Zuo, D.W.: Breather and rogue wave solutions of coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 107, 1195...
    • 21. Weiner, A.M., Heritage, J.P., Hawkins, R.J., Thurston, R.N., Kirschner, E.M., Leaird, D.E., Tomlinson, W.J.: Experimental observation...
    • 22. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear...
    • 23. Li, P., Wang, L., Kong, L.Q., Wang, X., Xie, Z.Y.: Nonlinear waves in the modulation instability regime for the fifth-order nonlinear...
    • 24. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic...
    • 25. Wang, X.B., Zhang, T.T., Dong, M.J.: Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl....
    • 26. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear...
    • 27. Wang, Z., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave...
    • 28. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New...
    • 29. Zhou, R.G.: Finite-dimensional integrable Hamiltonian systems related to the nonlinear Schrödinger equation. Stud. Appl. Math. 123, 311...
    • 30. Zhou, R.G.: Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued modified Korteweg–de Vries...
    • 31. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave...
    • 32. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno