Ir al contenido

Documat


Trajectory Controllability for Delayed Linear Discrete Systems with Second-Order Differences

  • Maosong Yang [3] ; Michal Feckan [1] ; JinRong Wang [2]
    1. [1] Comenius University

      Comenius University

      Eslovaquia

    2. [2] Guizhou University

      Guizhou University

      China

    3. [3] Guizhou University, Guizhou Open University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper, we investigate the trajectory controllability of second order delayed discrete systems, aided by the representation of the solution. By employing two delayed discrete matrix functions, we establish sufficient and necessary conditions for Kalmantype controllability criterion in general case and special case. Examples are provided to illustrate the effectiveness of our theoretical results.

  • Referencias bibliográficas
    • 1. Govindaraj, V., Malik, M., George, R.: Trajectory controllability of fractional dynamical systems. J. Control Decision 4, 114–130 (2017)
    • 2. Govindaraj, V., George, R.: Trajectory controllability of fractional integro-differential systems in Hilbert spaces. Asian J. Control 20,...
    • 3. Sandilya, R., George, R., Kumar, S.: Trajectory controllability of a semilinear parabolic system. J. Anal. 28, 107-C115 (2020)
    • 4. Benahmadi, L., Lhous, M., Tridane, A., Rachik, M.: Output trajectory controllability of a discrete-time sir epidemic model. Math. Model....
    • 5. Khusainov, D., Shuklin, G.: Linear autonomous time-delay system with permutation matrices solving. Stud. Univ. Žilina 17, 101–108 (2003)
    • 6. Diblík, J., Khusainov, D.: Representation of solutions of discrete delayed system x(k + 1) = Ax(k) + Bx(k − m) + f (k)...
    • 7. Diblík, J., Khusainov, D.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ....
    • 8. Diblík, J., Morávková, B.: Representation of the solutions of linear discrete systems with constant coefficients and two delays. Abstr....
    • 9. Diblík, J., Mencáková, K.: Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order...
    • 10. Pospíšil, M.: Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via...
    • 11. Khusainov, D., Shuklin, G.: Relative controllability in systems with pure delay. Intern. Appl. Mech. 41, 210–221 (2005)
    • 12. Diblík, J.: Exponential stability of linear discrete systems with nonconstant matrices and nonconstant delay. AIP Conf. Proc. 1863, 480003-1–480003-4...
    • 13. Diblík, J., Khusainov, D., R ˚užiˇcková, M.: Exponential stability of linear discrete systems with delay. AIP Conf. Proc. 1978, 430004-1–430004-4...
    • 14. Baštinec, J., Diblík, J., Khusainov, D.: Stability of linear discrete systems with variable delays. AIP Conf. Proc. 1978, 430005-1–430005-4...
    • 15. Diblík, J., Khusainov, D., R ˚užiˇcková, M.: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM...
    • 16. Diblík, J., Feˇckan, M., Pospí´sil, M.: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 52, 1745–1760...
    • 17. Pospíšil, M., Diblík, J., Feˇckan, M.: On relative controllability of delayed difference equations with multiple control functions. AIP...
    • 18. Diblík, J.: Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay. IEEE Trans....
    • 19. Diblík, J., Mencáková, K.: A note on relative controllability of higher order linear delayed discrete systems. IEEE Trans. Autom. Control....
    • 20. Mencáková, K., Diblík, J.: Relative controllability of a linear system of discrete equations with single delay. AIP Conf. Proc. 2293,...
    • 21. Mazanti, G.: Relative controllability of linear difference equations. SIAM J. Control Optim. 55, 3132– 3153 (2017)
    • 22. Pospíšil, M.: Relative controllability of delayed difference equations to multiple consecutive states. AIP Conf. Proc. 1863, 480002-1–480002-4...
    • 23. Liang, C., Wang, J., Feˇckan, M.: A study on ILC for linear discrete systems with single delay. J. Differ. Equ. Appl. 24, 358–374 (2018)
    • 24. Liang, C., Wang, J., Shen, D.: Iterative learning control for linear discrete delay systems via discrete matrix delayed exponential function...
    • 25. Jin, X., Wang, J., Shen, D.: Convergence analysis for iterative learning control of impulsive linear discrete delay systems. J. Differ....
    • 26. Jin, X., Wang, J.: Iterative learning control for linear discrete delayed systems with non-permutable matrices. Bull. Iran. Math. Soc....
    • 27. Yang, M., Feˇckan, M., Wang, J.: Solution to delayed linear discrete system with constant coefficients and second-order differences and...
    • 28. Yang, M., Feˇckan, M., Wang, J.: Ulam’s type stability of delayed discrete system with second-order differences. Qual. Theory Dyn. Syst....
    • 29. Yang, M., Feˇckan, M., Wang, J.: Relative controllability for delayed linear discrete system with secondorder differences. Qual. Theory...
    • 30. Jin, X., Feˇckan, M., Wang, J.: Relative controllability of impulsive linear discrete delay systems. Qual. Theory Dyn. Syst. 22, 133 (2023)
    • 31. Qiu, H., Shen, J., Song, H.: Decay rate of discrete-time homogeneous delayed systems with cone invariance. Intern. J. Control, pp. 1-9...
    • 32. Zamorano, S., Zuazua, E.: Tracking controllability for finite-dimensional linear systems. arXiv preprint arXiv:2407.18641 (2024)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno