Ir al contenido

Documat


Relative Controllability of Impulsive Linear Discrete Delay Systems

  • Xianghua Jin [1] ; Michal Feckan [2] ; JinRong Wang [3]
    1. [1] Guizhou University

      Guizhou University

      China

    2. [2] Comenius University

      Comenius University

      Eslovaquia

    3. [3] Guizhou University & Guizhou University (Guiyang)
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 4, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper investigates relative controllability of impulsive linear discrete delay systems with constant coefficients and a pure delay. Grammian and rank criteria for relative controllability are respectively established by introducing an impulsive discrete delay Grammian matrix. Thereafter, the restricted relative controllability of impulsive linear discrete delay systems is studied. More precisely, when the terminal state locates in a special invariant linear subspace, Grammian and rank criteria for relative controllability are demonstrated and an expression of corresponding control function is constructed. Finally, an example is provided to illustrate theoretical results

  • Referencias bibliográficas
    • 1. Kalman, R.E.: On the general theory of control systems. In: Proceedings First International Conference on Automatic Control, Moscow, pp....
    • 2. Khusainov, D.Y., Shuklin, G.V.: Relative controllability in systems with pure delay. Int. Appl. Mech. 41(2), 210–221 (2005)
    • 3. Diblík, J., Khusainov, D.Y.: Representation of solutions of discrete delayed system x(k+1) = ax(k)+ bx(k − m) + f (k) with...
    • 4. Diblík, J., Khusainov, D.Y.: Representation of solutions of linear discrete systems with constant coefficients and pure delay. Adv. Differ....
    • 5. Diblík, J., Morávková, B.: Representation of solutions of linear discrete systems with constant coefficients, a single delay and with impulses....
    • 6. Morávková, B.: Representation of solutions of linear discrete systems with delay. Ph.D. thesis, Brno University of Technology, Brno, Czech...
    • 7. Pospíšil, M.: Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via z-transform....
    • 8. Diblík, J., Mencáková, K.: Representation of solutions to delayed linear discrete systems with constant coefficients and with second-order...
    • 9. Diblík, J.: Representation of solutions to delayed differential equations with a single delay by dominant and subdominant solutions. Appl....
    • 10. Medved’, M., Pospíšil, M.: Sufficient conditions for the asymptotic stability of nonlinear multidelay differential equations with linear...
    • 11. Luo, Z., Wei, W., Wang, J.: Finite time stability of semilinear delay differential equations. Nonlinear Dyn. 89(1), 713–722 (2017)
    • 12. You, Z., Wang, J.: On the exponential stability of nonlinear delay systems with impulses. IMA J. Math. Control. Inf. 35(3), 773–803 (2018)
    • 13. Li, X., Peng, D., Cao, J.: Lyapunov stability for impulsive systems via event-triggered impulsive control. IEEE Trans. Autom. Control...
    • 14. Li, X., Yang, X., Cao, J.: Event-triggered impulsive control for nonlinear delay systems. Automatica 117, 108981 (2020)
    • 15. Li, X., Li, P.: Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 124, 109336 (2021)
    • 16. Li, X., Li, P.: Input-to-state stability of nonlinear systems: event-triggered impulsive control. IEEE Trans. Autom. Control 67(3), 1460–1465...
    • 17. Stamova, I., Stamov, G.: On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks. Discrete Contin. Dyn....
    • 18. Martynyuk, A., Stamova, I.: Stability of sets of hybrid dynamical systems with aftereffect. Nonlinear Anal. Hybrid Syst. 32, 106–114 (2019)
    • 19. Li, H., Kao, Y., Stamova, I., Shao, C.: Global asymptotic stability and S-asymptotic ω-periodicity of impulsive non-autonomous fractional-order...
    • 20. Wang, J., Luo, Z., Feˇckan, M.: Relative controllability of semilinear delay differential systems with linear parts defined by permutable...
    • 21. Pospíšil, M.: Relative controllability of neutral differential equations with a delay. SIAM J. Control Optim. 55(2), 835–855 (2017)
    • 22. You, Z., Wang, J., O’Regan, D., Zhou, Y.: Relative controllability of delay differential systems with impulses and linear parts defined...
    • 23. You, Z., Feˇckan, M., Wang, J., O’Regan, D.: Relative controllability of impulsive multi-delay differential systems. Nonlinear Anal. Model....
    • 24. Diblík, J., Khusainov, D.Y., R ˚užiˇcková, M.: Controllability of linear discrete systems with constant coefficients and pure delay. SIAM...
    • 25. Diblík, J., Feˇckan, M., Pospíšil, M.: On the new control functions for linear discrete delay systems. SIAM J. Control Optim. 52(3), 1745–1760...
    • 26. Diblík, J.: Relative and trajectory controllability of linear discrete systems with constant coefficients and a single delay. IEEE Trans....
    • 27. Diblík, J., Mencáková, K.: A note on relative controllability of higher order linear delayed discrete systems. IEEE Trans. Autom. Control...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno