Ir al contenido

Documat


Percepciones de futuros docentes y pedagogos sobre uso responsable de la IA: un instrumento de medida

  • Melchor Gómez-García [1] Árbol académico ; Julio Ruiz-Palmero [2] Árbol académico ; Moussa Boumadan-Hamed [1] Árbol académico ; Roberto Soto-Varela [3]
    1. [1] Universidad Autónoma de Madrid

      Universidad Autónoma de Madrid

      Madrid, España

    2. [2] Universidad de Málaga

      Universidad de Málaga

      Málaga, España

    3. [3] Universidad de Valladolid

      Universidad de Valladolid

      Valladolid, España

  • Localización: RIED: revista iberoamericana de educación a distancia, ISSN 1138-2783, Vol. 28, Nº 2, 2025
  • Idioma: español
  • DOI: 10.5944/ried.28.2.43288
  • Títulos paralelos:
    • Perceptions of future teachers and pedagogues on responsible AI: A measurement instrument
  • Enlaces
  • Resumen
    • español

      Este estudio presenta la validez y fiabilidad en la creación de un instrumento diseñado para evaluar las percepciones de docentes y pedagogos en formación hacia la integración de la Inteligencia Artificial en tareas relacionadas con su profesión docente, teniendo en cuenta factores intrínsecos como la actitud hacia su uso responsable, el nivel de creatividad en la creación de material didáctico con estas herramientas, el disfrute asociado en el uso de estas herramientas, y el nivel de ansiedad al enfrentarse al aprendizaje de esta tecnología emergente en su formación académica y su relevancia en su futuro mercado laboral. Fue utilizado un diseño no experimental ex post facto a través de encuestas con un muestreo no probabilístico por conveniencia, con un total de 548 docentes y pedagogos en formación de facultades de Ciencias de la Educación del territorio español. Para la elaboración del instrumento, se utilizaron medidas de fiabilidad y validez. Respecto a la fiabilidad, fueron utilizados los índices Alfa de Cronbach, Coeficiente Spearman-Brown, Dos Mitades de Guttman y fiabilidad compuesta. Respecto a la validez, se utilizaron la validez de comprensión, constructo, convergente y discriminante. Los resultados demostraron una fiabilidad altamente satisfactoria, y en términos de validez se observó un buen ajuste del modelo. La versión final del instrumento consta de 25 ítems clasificados en cinco factores latentes.

    • English

      This study presents the validity and reliability in the creation of an instrument designed to evaluate the perceptions of teachers and pedagogues in training towards the integration of Artificial Intelligence in tasks related to their teaching profession, taking into account intrinsic factors such as the attitude towards its responsible use, the level of creativity in the creation of didactic material with these tools, the associated enjoyment in the use of these tools, and the level of anxiety when facing the learning of this emerging technology in their academic training and its relevance in their future labor market. A non-experimental ex post facto design was used through surveys with a non-probabilistic sampling by convenience, with a total of 548 teachers and pedagogues in training from faculties of Education Sciences in Spain. Reliability and validity measures were used for the elaboration of the instrument. Regarding reliability, Cronbach's Alpha, Spearman-Brown Coefficient, Guttman's Two Halves and composite reliability were used. Regarding validity, comprehension, construct, convergent and discriminant validity were used. The results showed a highly satisfactory reliability, and in terms of validity, a good model fit was observed. The final version of the instrument consists of 25 items classified in five latent factors

  • Referencias bibliográficas
    • Alemany Díaz, M. D. M., Vallés Lluch, A., Villanueva López, J. F., & García-Serra García, J. (2021). E-learning in "innovation, creativity...
    • Alenezi, M. A. K., Mohamed, A. M., & Shaaban, T. S. (2023). Revolutionizing EFL special education: how ChatGPT is transforming the way...
    • Aler Tubella, A., Mora-Cantallops, M., & Nieves, J. C. (2024). How to teach responsible AI in Higher Education: challenges and opportunities....
    • Asencio, E. N., García, E. J., Redondo, S. R., & Ruano, B. T. (2017). Fundamentos de la investigación y la innovación educativa. UNIR...
    • Bellas, F., Guerreiro-Santalla, S., Naya, M., & Duro, R. J. (2023). AI curriculum for European high schools: An embedded intelligence...
    • Bentler, P. M. (1989). EQS structural equations program manual. BMDP Statistical Software.
    • Brandão, A., Pedro, L., & Zagalo, N. (2024). Teacher professional development for a future with generative artificial intelligence–an...
    • Cattell, R. B. (1966). The screen test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276. https://doi.org/10.1207/s15327906mbr0102_10
    • Chai, C. S., Yu, D., King, R. B., & Zhou, Y. (2024). Development and validation of the Artificial Intelligence Learning Intention Scale...
    • Cheng, L., Umapathy, K., Rehman, M., Ritzhaupt, A., Antonyan, K., Shidfar, P., Nichols, J., Lee, M., & Abramowitz, B. (2023). Designing,...
    • Cheung, G. W., & Wang, C. (2017). Current approaches for assessing convergent and discriminant validity with SEM: issues and solutions....
    • Chounta, I. A., Bardone, E., Raudsep, A., & Pedaste, M. (2022). Exploring teachers’ perceptions of artificial intelligence as a tool to...
    • Csikszentmihalyi, M., Csikszentmihalyi, M., Abuhamdeh, S., & Nakamura, J. (2014). Flow. Flow and the foundations of positive psychology:...
    • Espinoza-San Juan, J., Raby, M. D., & Sagredo-Lillo, E. (2024). Validación de un cuestionario sobre las percepciones y usos de la IA-Gen...
    • European Commission. (2019). Directorate-General for communications networks content and technology: Ethics guidelines for trustworthy AI....
    • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological...
    • Farrelly, T., & Baker, N. (2023). Generative artificial intelligence: Implications and considerations for higher education practice. Education...
    • Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal...
    • Gocen, A., & Aydemir, F. (2020). Artificial intelligence in education and schools. Research on Education and Media, 12(1), 13-21. https://doi.org/10.2478/rem-2020-0003
    • González-Mayorga, H., Rodríguez-Esteban, A., & Vidal, J. (2024). El uso del modelo GPT de OpenAIpara el análisis de textos abiertos en...
    • Grájeda, A., Burgos, J., Córdova, P., & Sanjinés, A. (2024). Assessing student-perceived impact of using artificial intelligence tools:...
    • Guillén-Gámez, F. D., Ruiz-Palmero, J., & García, M. G. (2023). Digital competence of teachers in the use of ICT for research work: development...
    • Guillén-Gámez, F. D., Tomczyk, Ł., Colomo-Magaña, E., & Mascia, M. L. (2024). Digital competence of Higher Education teachers in research...
    • Hair Jr, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (pp. 785-785). Prentice Hall.
    • Hasanein, A. M., & Sobaih, A. E. E. (2023). Drivers and consequences of ChatGPT use in higher education: Key stakeholder perspectives....
    • Heinzl, A., Buxmann, P., Wendt, O., & Weitzel, T. (Eds.). (2011). Theory-guided modeling and empiricism in information systems research....
    • Hopcan, S., Türkmen, G., & Polat, E. (2024). Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates....
    • Hornberger, M., Bewersdorff, A., & Nerdel, C. (2023). What do university students know about Artificial Intelligence? Development and...
    • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives....
    • Hwang, G. J., & Chen, N. S. (2023). Exploring the potential of generative artificial intelligence in education: applications, challenges,...
    • Jang, Y., Choi, S., & Kim, H. (2022). Development and validation of an instrument to measure undergraduate students’ attitudes toward...
    • Kaouni, M., Lakrami, F., & Labouidya, O. (2023). The design of an adaptive E-learning model based on Artificial Intelligence for enhancing...
    • Kim, S. W., & Lee, Y. (2022). The artificial intelligence literacy scale for middle school students. Journal of the Korea Society of Computer...
    • Lambert, J., & Stevens, M. (2023). ChatGPT and generative AI technology: a mixed bag of concerns and new opportunities. Computers in the...
    • Marquina, M. C. G., Pinto-Villar, Y. M., Aranzamendi, J. A. M., & Gutiérrez, B. J. A. (2024). Adaptación y validación de un instrumento...
    • Meroño, L., Calderón Luquin, A., Arias Estero, J. L., & Méndez Giménez, A. (2018). Diseño y validación del cuestionario de percepción...
    • Mohamed, A. M., Shaaban, T. S., Bakry, S. H., Guillén-Gámez, F. D., & Strzelecki, A. (2024). Empowering the Faculty of Education Students:...
    • Moneta, G. B., & Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal...
    • Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024). Development and validation of a scale...
    • Nazaretsky, T., Cukurova, M., & Alexandron, G. (2022, March). An instrument for measuring teachers’ trust in AI-based educational technology....
    • Ng, D. T. K., Leung, J. K. L., Chu, S. K. W., & Qiao, M. S. (2021). Conceptualizing AI literacy: An exploratory review. Computers and...
    • Ng, D. T. K., Wu, W., Leung, J. K. L., & Chu, S. K. W. (2023). Artificial Intelligence (AI) literacy questionnaire with confirmatory factor...
    • Nunnally, J. C. (1978). An overview of psychological measurement. Clinical diagnosis of mental disorders: A handbook (pp. 97-146). https://doi.org/10.1007/978-1-4684-2490-4_4
    • Ouyang, F., Zheng, L., & Jiao, P. (2022). Artificial intelligence in online higher education: A systematic review of empirical research...
    • Pérez, C., & Carretero-Dios, H. (2005). Normas para el desarrollo y revisión de estudios instrumentales. International Journal of Clinical...
    • Pérez, E. R., & Medrano, L. A. (2010). Análisis factorial exploratorio: bases conceptuales y metodológicas. Revista Argentina de Ciencias...
    • Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial...
    • Şahín Kölemen, C. (2024). Artificial intelligence technologies and ethics in educational processes: solution suggestions and results. Innoeduca....
    • Saz-Pérez, F., Mir, B. P., & Carrió, A. L. (2024). Validación y estructura factorial de un cuestionario TPACK en el contexto de Inteligencia...
    • Shaffer, D. R., & Kipp, K. (2010). Developmental Psychology: Childhood and Adolescence. Wadsworth.
    • Soriano-Alcantara, J. M., Guillén-Gámez, F. D., & Ruiz-Palmero, J. (2024). Exploring Digital Competencies: Validation and Reliability...
    • Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association....
    • Tiwari, C. K., Bhat, M. A., Khan, S. T., Subramaniam, R., & Khan, M. A. I. (2024). What drives students toward ChatGPT? An investigation...
    • Üzüm, B., Elçiçek, M., & Pesen, A. (2024). Development of Teachers’ Perception Scale Regarding Artificial Intelligence Use in Education:...
    • Uzumcu, O., & Acilmis, H. (2024). Do innovative teachers use AI-powered tools more interactively? a study in the context of diffusion...
    • Wang, F., Cheung, A. C., Chai, C. S., & Liu, J. (2024). Development and validation of the perceived interactivity of learner-AI interaction...
    • Wang, Y. M., Wei, C. L., Lin, H. H., Wang, S. C., & Wang, Y. S. (2022). What drives students’ AI learning behavior: A perspective of AI...
    • Wang, Y. Y., & Wang, Y. S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting...
    • Yilmaz, F. G. K., Yilmaz, R., & Ceylan, M. (2023). Generative artificial intelligence acceptance scale: A validity and reliability study....
    • Yu, H., & Guo, Y. (2023, June). Generative artificial intelligence empowers educational reform: current status, issues, and prospects....
    • Zhan, Y., Qiu, Z., Li, X., & Zhao, Z. (2024). Ease of Use or Fun Perception? Factors Affecting Retention of Newly Registered Mobile Game...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno