Ir al contenido

Documat


Kato–Ponce inequality with A_{\vec P} weights

  • Douglas, Sean [1]
    1. [1] University of Missouri

      University of Missouri

      Township of Columbia, Estados Unidos

  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 76, Fasc. 2, 2025, págs. 337-353
  • Idioma: inglés
  • DOI: 10.1007/s13348-024-00434-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We prove the Kato-Ponce inequality (fractional normed Leibniz rule) for multiple factors in the setting of multiple weights (A_{\vec P} weights). This extends the class of known weights for which the inequality holds from the tensor product of Muckenhoupt weights to a strictly larger weight class.

      We’re sorry, something doesn't seem to be working properly.

      Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Referencias bibliográficas
    • Bernicot, F., Maldonado, D., Moen, K., Naibo, V.: Bilinear Sobolev–Poincaré inequalities and Leibniz-type rules. J. Geom. Anal. 24, 1144–1180...
    • Bourgain, J., Li, D.: On an endpoint Kato–Ponce inequality. Differ. Integral Equ. 27, 1037–1072 (2014)
    • Grafakos, L., Maldonado, D., Naibo, V.: A remark on an endpoint Kato–Ponce inequality. Differ. Integral Equ. 27, 415–424 (2014)
    • Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. 668, 133–147 (2012)
    • Grafakos, L., Oh, S.: The Kato–Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014)
    • Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)
    • Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear...
    • Li, K., Sun, W.: Weighted estimates for multilinear Fourier multipliers. Forum Math. 27(2), 1101–1116 (2015)
    • Naibo, V., Thomson, A.: Coifman–Meyer multipliers: Leibniz-type rules and applications to scattering of solutions To PDEs. Trans. Am. Math....
    • Oh, S., Wu, X.: The Kato–Ponce inequality with polynomial weights. Math. Z. 302, 1489–1526 (2021)
    • Oh, S., Wu, X.: On L^1 Endpoint Kato-Ponce Inequality. Math. Res. Lett. 27, 1129–1163 (2020)
    • Tomita, N.: A Hörmander Type Multiplier Theorem For Multilinear Operators. J. Funct. Anal. 259, 2028–2044 (2010)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno