Ir al contenido

Documat


New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory

  • Autores: Andrei K. Lerner, Sheldy J. Ombrosi Árbol académico, Carlos Pérez Moreno Árbol académico, Rodolfo H. Torres, Rodrigo Trujillo González Árbol académico
  • Localización: Advances in mathematics, ISSN 0001-8708, Vol. 220, Nº 4, 2009, págs. 1222-1264
  • Idioma: inglés
  • DOI: 10.1016/j.aim.2008.10.014
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • A multi(sub)linear maximal operator that acts on the product of m Lebesgue spaces and is smaller than the m-fold product of the Hardy�Littlewood maximal function is studied. The operator is used to obtain a precise control on multilinear singular integral operators of Calderón�Zygmund type and to build a theory of weights adapted to the multilinear setting. A natural variant of the operator which is useful to control certain commutators of multilinear Calderón�Zygmund operators with BMO functions is then considered. The optimal range of strong type estimates, a sharp end-point estimate, and weighted norm inequalities involving both the classical Muckenhoupt weights and the new multilinear ones are also obtained for the commutators


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno