Ir al contenido

Documat


Topological Sensitivity for Nonautonomous Discrete Dynamical Systems

  • Mohammad Salman [1] ; Ruchi Das [1]
    1. [1] University of Delhi

      University of Delhi

      India

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 3, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • In this paper we introduce the notions of topological sensitivity and its stronger forms for nonautonomous discrete dynamical systems and obtain sufficient conditions such that these notions are preserved under iterations and altered nonautonomous systems.

      It is proved that for a finitely generated nonautonomous system on an infinite Urysohn space, topological transitivity and dense periodicity imply topological sensitivity.

  • Referencias bibliográficas
    • 1. Banks, J., Brooks, J., Gairns, G., Davis, G., Stacey, D.: On Devaney’s definition of chaos. Amer. Math. Monthly 99, 332–334 (1992)
    • 2. Das, R., Kumar, D., Salman, M.: Topological sensitivity and its stronger forms on semiflows. Bull. Korean Math. Soc. 61, 247–262 (2024)
    • 3. Fedeli, A.: Topologically sensitive dynamical systems. Topol. Appl. 248, 192–203 (2018)
    • 4. Figueroa, W., Prada, D., Vera, P., Gomez, J., Montes, E., Bautista, G.: Analysis of population dynamics and chaos theory. J. Phys.: Conf....
    • 5. Kim, J., Ju, H., An, W.: Inheritance of F-chaos and F-sensitivities under an iteration for non-autonomous discrete systems. Discrete Contin....
    • 6. Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dynam. 4, 205–233 (1996)
    • 7. Li, R., Michal, M.: N-Convergence and chaotic properties of non-autonomous discrete systems. Qual. Theory Dyn. Syst. 22, 78 (2023)
    • 8. Li, Z., Zhang, W., Wang, W.: Topological entropy dimension for nonautonomous dynamical systems. J. Math. Anal. Appl. 475, 1978–1991 (2019)
    • 9. Miralles, A., Murillo-Arcila, M., Sanchis, M.: Sensitive dependence for nonautonomous discrete dynamical systems. J. Math. Anal. Appl....
    • 10. Muni, S.S., McLachlan, R.I., Simpson, D.J.W.: Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions....
    • 11. Muni, S.S., McLachlan, R.I., Simpson, D.J.W.: Unfolding globally resonant homoclinic tangencies. Discrete Contin. Dyn. Syst. 42, 4013–4030...
    • 12. Ruelle, D., Takens, F.: On the nature of turbulence. Comm. Math. Phys. 20, 167–192 (1971)
    • 13. Salman, M., Das, R.: Sensitivity and property P in non-autonomous systems, Mediterr. J. Math., 17 (2020), 128 (19 pages)
    • 14. Salman, M., Das, R.: Dynamics of multi-sensitive non-autonomous systems with respect to a vector, Bull. Malays. Math. Sci. Soc., 47 (2024),...
    • 15. Salman, M., Wu, X., Das, R.: Sensitivity of nonautonomous dynamical systems on uniform spaces. Int. J. Bifurcation Chaos 31, 2150017 (2021)
    • 16. Sánchez, I., Sanchis, M., Villanueva, H.: Chaos in hyperspaces of nonautonomous discrete systems. Chaos Solitons Fractals 94, 68–74 (2017)
    • 17. Shao, H., Shi, Y., Zhu, H.: Strong Li-Yorke chaos for time-varying discrete systems with A-coupledexpansion. Int. J. Bifurc. Chaos 25,...
    • 18. Shi, Y., Chen, G.: Chaos of time-varying discrete dynamical systems. J. Difference Equ. Appl. 15, 429–449 (2009)
    • 19. Silverman, S.: On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22, 353–375 (1992)
    • 20. Wang, T., Jing, K., Yin, J.: The topological sensitivity with respect to Furstenberg families. Discrete Dyn. Nat. Soc. 2020, 7684072 (2020)
    • 21. Wu, X., Chen, G.: Answering two open problems on Banks theorem for non-autonomous dynamical systems. J. Difference Equ. Appl. 25, 1790–1794...
    • 22. Yang, C., Li, Z.: A remark on Banks theorem. J. Difference Equ. Appl. 24, 1777–1782 (2018)
    • 23. Zhu, H., Shi, Y., Shao, T.: Devaney chaos in nonautonomous discrete systems. Int. J. Bifurcation Chaos 26, 1650190 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno