Ir al contenido

Documat


N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems

  • Risong Li [1] ; Michal Málek [2]
    1. [1] Guangdong Ocean University

      Guangdong Ocean University

      China

    2. [2] Silesian University in Opava

      Silesian University in Opava

      Chequia

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 22, Nº 2, 2023
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Let f1,∞ := ( fn)∞ n=1 be a non-autonomous dynamical system on a compact metric space X. For a given N ∈ N we consider Nth iterate f [N] 1,∞ of the system (i.e. f [N] 1,∞ = ( f N N(n−1)+1)∞ n=1, where f n i = fi+(n−1)◦···◦ fi and f 0 1 = idX .) We also investigate Nconvergent non-autonomous systems this is weaker notion than uniform convergence.

      In this setting we generalize results regarding different types of chaos. Particularly we prove (1) f1,∞ is distributionally chaotic of type 1 if and only if f [N] 1,∞ is also.

      (2) f1,∞ is distributionally chaotic of type 2 if and only if f [N] 1,∞ is also.

      (3) f1,∞ is distributionally chaotic of type 2 1 2 if and only if f [N] 1,∞ is also.

      (4) f1,∞ is P-chaotic if and only if f [N] 1,∞ is also, where P-chaos denotes one of the following properties: Li-Yorke chaos, dense chaos, dense δ-chaos, generic chaos, generic δ-chaos, Li-Yorke sensitivity and spatio-temporal chaos.

      (5) f1,∞ is sensitive (resp. ergodically sensitive) if and only if f [N] 1,∞ is also.

      We also discuss and partly solve a problem given by [Xinxing Wu, Peiyong Zhu, Chaos in a class of non-autonomous discrete systems. Applied Mathematics Letters 26 (2013) 431-436]. Furthermore, we present two examples which show that conditions of N-convergence and continuity in some results cannot be removed.

  • Referencias bibliográficas
    • 1. Wu, X., Zhu, P.: Chaos in a class of non-autonomous discrete systems. Appl. Math. Lett. 6(4), 431–436 (2013)
    • 2. Kolyada, S.F., Snoha, L: Topological entropy of nonautonomous dynamical systems. Random Comput. ˇ Dynam. 4(2–3), 205–233 (1996)
    • 3. Kolyada, S., Misiurewicz, M., Snoha, L: Topological entropy of nonautononous piecewise monotone ˇ dynamical systems on the interval. Fund....
    • 4. Dvoˇráková, J.: On a problem of iteration invariants for distributional chaos. Commun. Nonlinear Sci. Numer. Simul. 17(2), 785–787 (2012)
    • 5. Elaydi, S.: Nonautonomous difference equations: open problems and conjectures, Fields Inst. Communications 42, 423–428 (2004)
    • 6. Elaydi, S., Sacker, R.J.: Nonautonomous beverton-holt equations and the cushing-Henson conjectures. J. Differ. Equ. Appl. 11(4–5), 337–346...
    • 7. Li, T.Y., Yorke, J.: Period three implies chaos. Amer. Math. Monthly 82(10), 985–992 (1975)
    • 8. Piórek, J.: On generic chaos of shifts in function spaces. Ann. Polon. Math. 52(2), 139–146 (1990)
    • 9. L. Snoha, Generic chaos, European Conference on Iteration Theory (Batschuns, 1989), ˇ World Sci. Publ., River Edge, NJ, (1991), 347–351
    • 10. Akin, E., Kolyada, S.F.: Li-Yorke sensitivity. Nonlinearity 16(4), 1421–1433 (2003)
    • 11. Kolyada, S.: Li-Yorke sensitivity and other concepts of chaos. Ukrain. Mat. Zh. 56(8), 1043–1061 (2004)
    • 12. Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc....
    • 13. Oprocha, P., Wilczynski, P.: Shift spaces and distributional chaos. Chaos Solit. Fractals 31(2), 347–355 (2007)
    • 14. Balibrea, F., Smítal, J., Štefánková, M.: The three versions of distributional chaos. Chaos Solit. Fractals 23(5), 1581–1583 (2005)
    • 15. Smítal, J., Štefánková, M.: Distributional chaos for triangular maps. Chaos Solit. Fractals 21(5), 1125– 1128 (2004)
    • 16. Wang, L., Huang, G., Huan, S.: Distributional chaos in a sequence. Nonlinear Anal. 67(7), 2131–2136 (2007)
    • 17. Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos. Nonlinear Anal. 68(6), 1682–1686 (2008)
    • 18. Li, R.: A note on the three versions of distributional chaos. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1993–1997 (2011)
    • 19. Oprocha, P., Štefánková, M.: Specification property and distributional chaos almost everywhere. Proc. Amer. Math. Soc. 136(11), 3931–3940...
    • 20. Dvoˇráková, J.: Chaos in nonautonomous discrete dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4649–4652 (2012)
    • 21. Hantáková, J., Roth, Z., Roth, S.: On the weakest version of distributional chaos. Int. J. Bifur. Chaos Appl. Sci. Engrg. 26(14), 1650235...
    • 22. Hantáková, J.: Iteration problem for distributional chaos. Int. J. Bifur. Chaos. Appl. Sci. Eng. 27(12), 1750183 (2017)
    • 23. Li, R.: A note on shadowing with chain transitivity. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2815–2823 (2012)
    • 24. Li, R.: The large deviations theorem and ergodic sensitivity. Commun. Nonlinear Sci. Numer. Simul. 18(4), 819–825 (2013)
    • 25. Subrahmonian Moothathu, T.K.: Stronger forms of sensitivity for dynamical systems. Nonlinearity 20(9), 2115–2126 (2007)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno