Ir al contenido

Documat


Proximal motion planning algorithms

  • İs, Melih [1] ; Karaca, İsmet [1]
    1. [1] Ege University

      Ege University

      Turquía

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 26, Nº. 1, 2025, págs. 131-162
  • Idioma: inglés
  • DOI: 10.4995/agt.2025.21183
  • Enlaces
  • Resumen
    • In this paper, we transfer the problem of measuring navigational complexity in topological spaces to the nearness theory. We investigate the most important component of this problem, the topological complexity number (denoted by TC), with its different versions including relative and higher TC, on the proximal Schwarz genus as well as the proximal (higher) homotopic distance. We outline the fundamental properties of some concepts related to the proximal (or descriptive proximal) TC numbers. In addition, we provide some instances of (descriptive) proximity spaces, specifically on basic robot vacuum cleaners, to illustrate the results given on proximal and descriptive proximal TC.

  • Referencias bibliográficas
    • A. Borat and T. Vergili, Higher homotopic distance, Topol. Methods Nonlinear Anal. 57, no. 2 (2021), 525-534. https://doi.org/10.12775/TMNA.2020.053
    • V. A. Efremovic, The geometry of proximity I, Mat. Sb. (New Series) 31(73) (1952), 189-200.
    • M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29, no. 2 (2003), 211-221. https://doi.org/10.1007/s00454-002-0760-9
    • P. Grzegrzolka and J. Siegert, Coarse proximity and proximity at infinity, Topol. Appl. 251 (2019), 18-46. https://doi.org/10.1016/j.topol.2018.10.009
    • M. İs and İ. Karaca, Higher topological complexity for fibrations, Filomat 36, no. 20 (2022), 6885-6896. https://doi.org/10.2298/FIL2220885I
    • M. İs and İ. Karaca, Some properties on proximal homotopy theory, Filomat 38, no. 9 (2024), 3137-3156. https://doi.org/10.2298/FIL2409137I
    • M. İs and İ. Karaca, The higher topological complexity in digital images, Appl. Gen. Topol. 21 (2020), 305-325. https://doi.org/10.4995/agt.2020.13553
    • M. İs and İ. Karaca, Certain topological methods for computing digital topological complexity, Korean J. Math. 31, no. 1 (2023), 1-16.
    • M. İs and İ. Karaca, Topological complexities of finite digital images, J. Linear Topol. Algeb. 11, no. 1 (2022), 55-68.
    • M. İs and İ. Karaca, Counterexamples for topological complexity in digital images, J. Int. Math. Virtual Inst. 12, no. 1 (2022), 103-121.
    • İ. Karaca and M. İs, Digital topological complexity numbers, Turk. J. Math. 42, no. 6 (2018), 3173-3181. https://doi.org/10.3906/mat-1807-101
    • S. Leader, On products of proximity spaces, Math. Ann. 154 (1964), 185-194. https://doi.org/10.1007/BF01360891
    • E. Macías-Virgós and D. Mosquera-Lois, Homotopic distance between maps, Math. Proc. Camb. Philos. Soc. 172, no. 1 (2022), 1-21. https://doi.org/10.1017/S0305004121000116
    • S. G. Mrowka and W. J. Pervin, On uniform connectedness, Proc. Amer. Math. Soc. 15, no. 3 (1964), 446-449. https://doi.org/10.1090/S0002-9939-1964-0161307-7
    • S. A. Naimpally and B. D. Warrack, Proximity Spaces, Cambridge Tract in Mathematics No. 59, Cambridge University Press, Cambridge, UK, x+128...
    • S. A. Naimpally and J. F. Peters, Topology With Applications, Topological Spaces via Near and Far, World Scientific, Singapore, 2013. https://doi.org/10.1142/8501
    • P. Pavesic, Topological complexity of a map, Homol. Homotopy Appl. 21 (2019), 107-130. https://doi.org/10.4310/HHA.2019.v21.n2.a7
    • F. Pei-Ren, Proximity on function spaces, Tsukuba J. Math. 9, no. 2 (1985), 289-297. https://doi.org/10.21099/tkbjm/1496160291
    • J. F. Peters, Near sets. General theory about nearness of objects, Appl. Math. Sci. 1, no. 53 (2007), 2609-2629.
    • J. F. Peters, Near sets. Special theory about nearness of objects, Fundam. Inform. 75, no. 1-4 (2007), 407-433.
    • J. F. Peters and S. A. Naimpally, Applications of near sets, Amer. Math. Soc. Notices 59, no. 4 (2012), 536-542. https://doi.org/10.1090/noti817
    • J. F. Peters, Near sets: An introduction, Math. Comput. Sci. 7, no. 1 (2013), 3-9. https://doi.org/10.1007/s11786-013-0149-6
    • J. F. Peters, Topology of Digital Images: Visual Pattern Discovery in Proximity Spaces, (Vol. 63), Springer Science & Business Media,...
    • J. F. Peters and T. Vergili, Good coverings of proximal Alexandrov spaces. Homotopic Cycles in Jordan Curve Theorem Extension, arXiv:2108.10113...
    • J. F. Peters and T. Vergili, Descriptive proximal homotopy. Properties and relations, arXiv:2104.05601v1 (2021).
    • J. F. Peters and T. Vergili, Good coverings of proximal Alexandrov spaces. Path cycles in the extension of the Mitsuishi-Yamaguchi good covering...
    • J. F. Peters and T. Vergili, Proximity space categories. Results for proximal Lyusternik-Schnirel'man, Csaszar and bornology categories,...
    • Y. Rudyak, On higher analogs of topological complexity, Topol. Appl. 157 (2010), 916-920. Erratum: Topol. Appl. 157 (2010), 1118. https://doi.org/10.1016/j.topol.2009.12.007
    • Y. M. Smirnov, On proximity spaces, Mat. Sb. (New Series) 31(73) (1952), 543-574. English Translation: Amer. Math. Soc. Translations: Series...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno