Ir al contenido

Documat


KP integrability through the swap relation

  • A. Alexandrov [4] ; B. Bychkov [1] ; P. Dunin-Barkowski [2] ; M. Kazarian [2] ; S. Shadrin [3]
    1. [1] University of Haifa

      University of Haifa

      Israel

    2. [2] Higher School of Economics, National Research University

      Higher School of Economics, National Research University

      Rusia

    3. [3] University of Amsterdam

      University of Amsterdam

      Países Bajos

    4. [4] Center for Geometry and Physics, Institute for Basic Science (IBS), Pohang, Korea
  • Localización: Selecta Mathematica, New Series, ISSN 1022-1824, Vol. 31, Nº. 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • We discuss a universal relation that we call the x − y swap relation, which plays a prominent role in the theory of topological recursion, Hurwitz theory, and free probability theory. We describe in a very precise and detailed way the interaction of the x −y swap relation and KP integrability. As an application, we prove a recent conjecture that relates some particular instances of topological recursion to the Mironov–Morozov– Semenoff matrix integrals.

  • Referencias bibliográficas
    • Adler, M., van Moerbeke, P.: A matrix integral solution to two-dimensional Wp-gravity. Comm. Math. Phys. 147(1), 25–56 (1992). https://doi.org/10.1007/BF02099527
    • Alexandrov, A., Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Log topological recursion through the prism of x − y swap. Int....
    • Alexandrov, A.: KP integrability of triple Hodge integrals. II. Generalized Kontsevich matrix model. Anal. Math. Phys. 11(1), Paper No. 24,...
    • Alexandrov, A., Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: A universal formula for the x − y swap in topological recursion....
    • Alexandrov, A., Dhara, S.: On higher Brézin-Gross-Witten tau-functions. Int. Math. Res. Not. 2, Paper No. rnae286, 36 (2025). https://doi.org/10.1093/imrn/rnae286....
    • Borot, G., Charbonnier, S., Do, N., Garcia-Failde, E.: Relating ordinary and fully simple maps via monotone Hurwitz numbers. Electron. J....
    • Borot, G., Charbonnier, S., Garcia-Failde, E.: Topological recursion for fully simple maps from ciliated maps. Comb. Theory 4(2), Paper No....
    • Borot, G., Garcia-Failde, E.: Simple maps, Hurwitz numbers, and topological recursion. Comm. Math. Phys. 380(2), 581–654 (2020). https://doi.org/10.1007/s00220-020-03867-1....
    • Borot, G., Kramer, R., Schüler, Y.: Higher Airy structures and topological recursion for singular spectral curves. Ann. Inst. Henri Poincaré...
    • Borot, G., Bouchard, V., Chidambaram, N.K., Kramer, R., Shadrin, S.: Taking limits in topological recursion (2023). arXiv:2309.01654 [math.AG]
    • Borot, G., Charbonnier, S., Garcia-Failde, E., Leid, F., Shadrin, S.: Functional relations for higher-order free cumulants (2021). arXiv:2112.12184...
    • Bouchard, V., Eynard, B.: Think globally, compute locally. J. High Energy Phys. (2013). https://doi.org/10.1007/JHEP02(2013)143. arXiv:1211.2302...
    • Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Explicit closed algebraic formulas for Orlov–Scherbin n-point functions. J. Éc....
    • Bychkov, B., Dunin-Barkowski, P., Kazarian, M., Shadrin, S.: Generalised ordinary vs fully simple duality for n-point functions and a proof...
    • Charbonnier, S., Chidambaram, N.K., Garcia-Failde, E., Giacchetto, A.: Shifted Witten classes and topological recursion. Trans. Am. Math....
    • Chekhov, L., Norbury, P.: Topological recursion with hard edges. Int. J. Math. 30(3), 1950014 (2019). https://doi.org/10.1142/S0129167X19500149....
    • Chidambaram, N. K., Garcia-Failde, E., Giacchetto, A.: Relations on M¯ g,n and the negative r-spin Witten conjecture (2023). arXiv:2205.15621...
    • Eynard, B., Orantin, N.: Topological recursion in enumerative geometry and random matrices. J. Phys. A 42(29), 293001 (2009). https://doi.org/10.1088/1751-8113/42/29/293001
    • Guo, S., Ji, C., Zhang, Q.: A generalization of the Witten conjecture through spectral curve (2023). arXiv:2309.12271 [math-ph]
    • Hock, A.: A simple formula for the x − y symplectic transformation in topological recursion. J. Geom. Phys. 194, Paper No. 105027 (2023)....
    • Hock, A.: Laplace transform of the x − y symplectic transformation formula in topological recursion. Commun. Number Theory Phys. 17(4), 821–845...
    • Hock, A.: On the x − y Symmetry of Correlators in Topological Recursion via Loop Insertion Operator. Comm. Math. Phys. 405(7), Paper No. 166...
    • Kazarian, M., Norbury, P.: Polynomial relations among kappa classes on the moduli space of curves. Int. Math. Res. Not. 3, 1825–1867 (2024)....
    • Kharchev, S., Marshakov, A.: On p − q duality and explicit solutions in c ≤ 1 2D gravity models. Int. J. Modern Phys. A 10(8), 1219–1236 (1995)....
    • Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Towards unified theory of 2d gravity. Nucl. Phys. B 380(1–2), 181–240...
    • Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Comm. Math. Phys. 147(1), 1–23 (1992). https://doi.org/10.1007/BF02099526
    • Mironov, A., Morozov, A., Semenoff, G. W.: Unitary matrix integrals in the framework of the generalized Kontsevich model. Int. J. Mod. Phys....
    • Miwa, T., Jimbo, M., Date, E.: Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Translational from the Japanese...
    • Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math. 83(2), 333–382 (1986). https://doi.org/10.1007/BF01388967
    • Takasaki, K., Takebe, T.: Integrable hierarchies and dispersionless limit. Rev. Math. Phys. 7(5), 743–808 (1995). https://doi.org/10.1142/S0129055X9500030X....
    • Zhou, J.: Emergent Geometry and Mirror Symmetry of A Point (2015). arXiv:1507.01679 [math-ph]

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno