Ir al contenido

Documat


Personalized Recommendations in E-commerce: A Case Study on Sports and Outdoor Activities

  • Patricia Da-Concepcion-Sarrate [1] ; Carlos Fernandez-Lozano [1] Árbol académico ; Adrian Carballal [1] Árbol académico ; Francisco Cedron [1] Árbol académico
    1. [1] Universidade da Coruña

      Universidade da Coruña

      A Coruña, España

  • Localización: Proceedings XoveTIC 2024: Impulsando el talento científico / coord. por Manuel Lagos Rodríguez, Tirso Varela Rodeiro, Javier Pereira-Loureiro Árbol académico, Manuel Francisco González Penedo Árbol académico, 2024, págs. 55-60
  • Idioma: inglés
  • Enlaces
  • Resumen
    • Nowadays, recommendation systems have become essential tools in e-commerce and social networks, offering personalized content, product, and service suggestions based on user behaviour and preferences. This document focuses on collaborative filtering, which makes recommendations using users' past product ratings. Several collaborative filtering algorithms will be compared, including Alternating Least Squares (ALS), Non-negative Matrix Factorization (NMF), Singular Value Decomposition (SVD), Bayesian Personalized Ranking (BPR), and Neural Collaborative Filtering (NCF). These methods will be tested on a dataset of sports and outdoor products from Amazon. The performance will be evaluated with two types of metrics: for rating predictions, RMSE, MAE, and R²; and for ranking, Precision, Recall, and nDCG.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno