Ir al contenido

Documat


Imputation of large gaps in tourism management time series

  • José M. Caridad Ocerin Árbol académico ; Juan A. Marmolejo Martín [1] Árbol académico ; Petr Fiala [3] Árbol académico ; Lorena Caridad y López del Río [2]
    1. [1] Universidad de Granada

      Universidad de Granada

      Granada, España

    2. [2] Universidad de Sevilla

      Universidad de Sevilla

      Sevilla, España

    3. [3] Prague University of Economics and Business
  • Localización: Nuevas dimensiones de cambio en el panorama turístico actual. Melilla como destino emergente / coord. por Juan Antonio Marmolejo Martín Árbol académico, Salvador Moral Cuadra, 2025, ISBN 979-13-7006-081-7, págs. 197-207
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The tourist industry relies every day in the capability to foresee the near future: in fixing prices offered to potential customers, adapting the number of employees to demand, making available a certain number of rooms, and so on. The statistics used are both internal and from the Statistical Institutes and specialized companies. But it is usual to find gaps in the time series data, sometimes quite large.

      And, to analyze temporal data, it is convenient to avoid missing data, and outliers. We propose a strategy for dealing with large gaps in series related to this sector, based on obtaining back and forward forecast to minimize the forecasting errors. In a case study, using the average daily rate (ADR) for the Spanish hotels in a long period, the methodology proved to produce smaller RMSE, and get reliable forecasts.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno