Ir al contenido

Documat


Dynamics of Nonlinear Systems with Inelastic Impacts

  • Qihuai Liu [1] ; Jianbin Chen [1] ; Chao Wang [2]
    1. [1] Guilin University of Electronic Technology

      Guilin University of Electronic Technology

      China

    2. [2] Yancheng Teacher’s University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The impact oscillator is a significant model with crucial applications in the fields of mechanics and engineering. In this paper, we present a novel research framework to investigate the dynamics of inelastic impact oscillators. By constructing an auxiliary system, the study of inelastic impact oscillators is changed to the one of a continuous first-order system. This method avoids the continuity of system and is also helpful for numerically handling impact oscillators. In order to demonstrate the effectiveness of our method, we investigated the dynamics of autonomous linear impact oscillators and nonlinear impact oscillators, respectively. For the linear case, the results indicate the presence of a critical value. At this critical value, all impact motions exhibit periodic behavior. When the impact coefficient exceeds this critical value, the motion becomes unbounded. Conversely, when the coefficient is below the critical value, all movements ultimately come to rest at the origin. For the nonlinear case, when the perturbed term satisfies certain conditions, unbounded motions depend on the sign of a certain type of functional.

  • Referencias bibliográficas
    • 1. Zharnitsky, V.: Instability in Fermi-Ulamping-pong’problem. Nonlinearity 11(6), 1481 (1998)
    • 2. Cao, Z., Ma, H., Yu, X., Tan, Y., Ren, G., Qi, B.: Global dynamics of the breathing circle billiard. Qual. Theory Dyn. Syst. 21(4), 102...
    • 3. Boscaggin, A., Ortega, R., Zhao, L.: Periodic solutions and regularization of a Kepler problem with time-dependent perturbation. Trans....
    • 4. Liu, L., Zhou, J., Kong, L., Wang, Y., Li, J.: Analysis of the dynamic response and impact parameters of pneumatic down-the-hole hammer...
    • 5. Xie, Y., Chen, C., Liu, T., Wang, M.: Guidance, Navigation, and Control for Spacecraft Rendezvous and Docking: Theory and Methods. Springer,...
    • 6. Marò, S.: On unbounded motions in a real analytic bouncing ball problem. Qual. Theor. Dyn. Syst. 21, 112 (2022)
    • 7. Qian, D., Sun, X.: Invariant tori for asymptotically linear impact oscillators. Sci. China Ser. A 49, 669–687 (2006)
    • 8. Wang, Z., Liu, Q., Qian, D.: Existence of quasi-periodic solutions and littlewood boundedness problem of sub-linear impact oscillators....
    • 9. Fonda, A., Sfecci, A.: Periodic bouncing solutions for nonlinear impact oscillators. Adv. Nonlinear Stud. 13(1), 179–189 (2013)
    • 10. Maró, S.: Chaotic dynamics in an impact problem. Ann. Henri Poincaré 16, 1633–1650 (2015)
    • 11. Ruiz-Herrera, A., Torres, P.J.: Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J. Appl. Dyn. Syst. 12(1),...
    • 12. Qian, D., Torres, P.J.: Periodic motions of linear impact oscillators via the successor map. SIAM J. Math. Anal. 36(6), 1707–1725 (2005)
    • 13. Liu, Q., Wang, Z.: Periodic impact behavior of a class of hamiltonian oscillators with obstacles. J. Math. Anal. Appl. 365(1), 67–74 (2010)
    • 14. Jiang, M.-Y.: Periodic solutions of second order differential equations with an obstacle. Nonlinearity 19(5), 1165 (2006)
    • 15. Ding, W.: Subharmonic solutions of sublinear second order systems with impacts. J. Math. Anal. Appl. 379(2), 538–548 (2011)
    • 16. Cao, Z., Grebogi, C., Li, D., Xie, J.: The existence of Aubry-Mather sets for the fermi-ulam model. Qual. Theor. Dyn. Syst. 20, 1–12 (2021)
    • 17. Maró, S.: Coexistence of bounded and unbounded motions in a bouncing ball model. Nonlinearity 26(5), 1439 (2013)
    • 18. Marò, S.: Diffusion and chaos in a bouncing ball model. Z. Angew. Math. Phys. 71, 1–18 (2020)
    • 19. Paoli, L.: Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints.I: the inelastic impact case. Arch....
    • 20. Grace, I.M., Ibrahim, R.A., Pilipchuk, V.N.: Inelastic impact dynamics of ships with one-sided barriers. part I: analytical and numerical...
    • 21. Grace, I.M., Ibrahim, R.A., Pilipchuk, V.N.: Inelastic impact dynamics of ships with one-sided barriers. part II: experimental validation....
    • 22. Chen, Y., Liu, Q.: Fixed-time stabilization and H∞ control of time-delay port-controlled Hamiltonian systems. Eur. J. Control 77, 100996...
    • 23. Chen, Y., Liu, Q., Zhou, X.: New results on finite-time stability and H∞ control for nonlinear hamiltonian systems. Asian J. Control 26(3),...
    • 24. Fabry, C., Fonda, A.: Nonlinear resonance in asymmetric oscillators. J. Differ. Equ. 147(1), 58–78 (1998)
    • 25. Fabry, C., Fonda, A.: Bifurcations from infinity in asymmetric nonlinear oscillators. NoDEA Nonlinear Differ. Equ. Appl. 7, 23–42 (2000)
    • 26. Capietto, A., Wang, Z.: Periodic solutions of liénard equations with asymmetric nonlinearities at resonance. J. London Math. Soc. 68(1),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno