Ir al contenido

Documat


Dynamics of a Nonlocal Diffusive and Infectious SIR Epidemic Model with Double Free Boundaries

  • Hanxiang Bao [1] ; Mingxin Wang [1]
    1. [1] Henan Polytechnic University

      Henan Polytechnic University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • This paper concerns a nonlocal diffusive SIR epidemic model with nonlocal infectious and double free boundaries, which can be used to describe the spreading of infectious diseases. This model is a strongly coupled nonlocal diffusion system in some sense.

      We mainly study criteria for spreading and vanishing, and the long time behaviors.

      In addition to the usual Basic Reproduction Number R0 = k(a−β) b(a+γ ), we also discover another number R0 k a−β b , ·, (−h0, h0) , and find that these two numbers play a crucial role in determining both spreading and vanishing.

  • Referencias bibliográficas
    • 1. Bao, H.X., Wang, M.X., Yao, S.W.: Qualitative properties of solutions to nonlocal infectious SIR epidemic models. arXiv:2405.11871 (2024)
    • 2. Berestycki, H., Coville, J., Vo, H.-H.: On the definition and the properties of the principal eigenvalue of some nonlocal operators. J....
    • 3. Bentout, S., Djilali, S., Kuniya, T., Wang, J.L.: Mathematical analysis of a vaccination epidemic model with nonlocal diffusion. Math....
    • 4. Cao, J.F., Du, Y.H., Li, F., Li, W.T.: The dynamics of a Fisher-KPP nonlocal diffusion model with free boundaries. J. Funct. Anal. 277(8),...
    • 5. Cao, J.F., Li, W.-T., Yang, F.Y.: Dynamics of a nonlocal SIS epidemic model with free boundary. Discret. Contin. Dyn. Syst. Ser. B 22,...
    • 6. Chen, Y.J., Wang, M.X.: A nonlocal SIR epidemic problem with double free boundaries. Appl. Math. Lett. 133, 108259 (2022)
    • 7. Coville, J.: On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. J. Differ. Equ. 249, 2921–2953...
    • 8. Coville, J., Dávila, J., Martínez, S.: Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM...
    • 9. Djilali, S.: Generalities on a delayed spatiotemporal host-pathogen infection model with distinct dispersal rates. Math. Model. Nat. Phenom....
    • 10. Du, Y.H., Wang, M.X., Zhao, M.: Two species nonlocal diffusion systems with free boundaries. Discret. Contin. Dyn. Syst. 42(3), 1127–1162...
    • 11. Huang, H.M., Wang, M.X.: A nonlocal SIS epidemic problem with double free boundaries. Z. Angew. Math. Phys. 70, 109 (2019). https://doi.org/10.1007/s00033-019-1156-5
    • 12. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1972)
    • 13. Li, F., Coville, J., Wang, X.F.: On eigenvalue problems arising from nonlocal diffusion models. Discret. Contin. Dyn. Syst. 37, 879–903...
    • 14. Li, L., Li, W.T., Wang, M.X.: Dynamics for nonlocal diffusion problems with a free boundary. J. Differ. Equ. 330, 110–149 (2022)
    • 15. Li, L., Ni, W.J., Wang, M.X.: Dynamical properties of a new SIR epidemic model. Discret. Contin. Dyn. Syst. Ser. S. 17(2), 690–707 (2024)
    • 16. Li, L., Sheng, W.J., Wang, M.X.: Systems with nonlocal vs. local diffusions and free boundaries. J. Math. Anal. Appl. 483(2), 123646 (2020)
    • 17. Murray, J.D., Stanley, E.A., Brown, D.L.: On the spatial spread of rabies among foxes. Proc. Roy. Soc. London B 229, 111–150 (1986)
    • 18. Wang, R., Du, Y.H.: Long-time dynamics of a nonlocal epidemic model with free boundaries: spreading-vanishing dichotomy. J. Differ. Equ....
    • 19. Yang, G.Y., Yao, S.W.,Wang, M.X.: An SIR epidemic model with nonlocal diffusion, nonlocal infection and free boundaries. J. Math. Anal....
    • 20. Zhang, Q.Y., Wang, M.X.: Dynamics for a nonlocal diffusive SIR epidemic model with double free boundaries. Nonlinear Anal. RWA 81, 104208...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno