Ir al contenido

Documat


Generic Complex Polynomial Vector Fields with Real Coefficients

  • Jonathan Godin [1] ; Christiane Rousseau [2]
    1. [1] Université de Moncton

      Université de Moncton

      Canadá

    2. [2] University of Montreal

      University of Montreal

      Canadá

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 24, Nº 2, 2025
  • Idioma: inglés
  • Enlaces
  • Resumen
    • The paper studies the complex 1-dimensional polynomial vector fields with real coefficients under topological orbital equivalence preserving the separatrices of the pole at infinity. The number of generic strata is determined, and a complete parametrization of these strata is given in terms of a modulus formed by a combinatorial and an analytic part. The bifurcation diagram is described for the degree 4. A realization theorem is proved for any generic modulus.

  • Referencias bibliográficas
    • 1. Arriagada-Silva, W.: Characterization of the generic unfolding of a weak focus. J. Differ. Equ. 253, 1682–1708 (2012)
    • 2. Branner, B., Dias, K.: Classification of complex polynomial vector fields. J. Differ. Equ. Appl. 16, 463–517 (2010)
    • 3. Douady, A.: Does a Julia set depend continuously on the polynomial? In: Complex Dynamical Systems (Cincinnati, OH, 1994), Proceedings of...
    • 4. Douady, A., Estrada, J.F., Sentenac, P.: Champs de vecteurs polynomiaux sur C, unpublished manuscript (2005)
    • 5. Dias, K.: Enumerating combinatorial classes of the complex polynomial vector fields. Ergod. Theory Dyn. Syst. 33, 416–440 (2013)
    • 6. Dias, K., Tan, L.: On parameter space of complex polynomial vector fields. J. Differ. Equ. 260, 628–652 (2016)
    • 7. Dias, K.: A characterization of multiplicity-preserving global bifurcations of complex polynomial vector fields. Qual. Theory Dyn. Syst....
    • 8. Godin, J., Rousseau, C.: Analytic classification of germs of parabolic antiholomorphic diffeomorphisms of codimension k. Ergod. Theory...
    • 9. Godin, J., Rousseau, C.: Analytic classification of generic unfoldings of antiholomorphic parabolic fixed points of codimension 1. Mosc....
    • 10. Hubbard, J., Schleicher, D.: Multicorns are Not Path Connected, Princeton Mathematics Series, vol. 51, pp. 73–102. Princeton University...
    • 11. Kangro, K., Pourmoradnasseri, M., Theis, D.O.: Short note on the number of 1-ascents in dispersed Dyck paths. Discrete Math. Algorithms...
    • 12. Inou, H., Muckerjee, S.: Non-landing parameter rays of the multicorns. Invent. Math. 204, 869–893 (2016)
    • 13. Lavaurs, P.: Systèmes dynamiques holomorphes: explosion de points périodiques paraboliques. Université de Paris-Sud, Thesis (1989)
    • 14. Mardeši´c, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc....
    • 15. Milnor, J.: Remarks on iterated cubic maps. Exper. Math. 1, 5–25 (1992)
    • 16. Oudkerk, R.: The parabolic implosion for f0(z) = z+zν+1 + O(zν+2), thesis, University of Warwick (1999)
    • 17. Peixoto, M.M.: Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962)
    • 18. Ribón, J.: Modulus of analytic classification for unfoldings of resonant diffeomorphisms. Moscow Math. J. 8(400), 319–395 (2008)
    • 19. Rousseau, C.: Analytic moduli for unfoldings of germs of generic analytic diffeomorphisms with a codimension k parabolic point. Ergodi....
    • 20. Rousseau, C.: Generic unfolding of an antiholomorphic parabolic point of codimension k, to appear in Ergodic Theory Dynam. Systems, preprint...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno