Ir al contenido

Documat


A Characterization of Multiplicity-Preserving Global Bifurcations of Complex Polynomial Vector Fields

  • Dias Kealey [1]
    1. [1] City University of New York

      City University of New York

      Estados Unidos

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 19, Nº 3, 2020
  • Idioma: inglés
  • DOI: 10.1007/s12346-020-00424-y
  • Enlaces
  • Resumen
    • For the space of single-variable monic and centered complex polynomial vector fields of arbitrary degree d, it is proved that any bifurcation which preserves the multiplicity of equilibrium points admits a decomposition into a finite number of elementary bifurcations, and the elementary bifurcations are characterized.

  • Referencias bibliográficas
    • 1. Álvarez, M., Gasull, A., Prohens, R.: Topological classification of polynomial complex differential equations with all the critical points...
    • 2. Andronov, A.A., Leontovich, E.A., Gordon, I.I., Maier, A.G.: Qualitative Theory of Second-Order Dynamic Systems. Wiley, New York (1973)....
    • 3. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of second order. Int. J. Bifurc....
    • 4. Benzinger, H.E.: Plane autonomous systems with rational vector fields. Trans. Am. Math. Soc. 326(2), 465–483 (1991)
    • 5. Benzinger, H.E.: Julia sets and differential equations. Proc. Am. Math. Soc. 117(4), 939–946 (1993)
    • 6. Branner, B., Dias, K.: Classification of polynomial vector fields in one complex variable. J. Differ. Equ. Appl. 16(5), 463–517 (2010)
    • 7. Brickman, L., Thomas, E.S.: Conformal equivalence of analytic flows. J. Differ. Equ. 25, 310–324 (1977)
    • 8. Buff, X., Chéritat, A.: Ensembles de julia quadratiques de mesure de lebesgue strictement positive. C. R. Acad. Sci. Paris 341(11), 669–674...
    • 9. Buff, X., Tan, L.: Dynamical convergence and polynomial vector fields. J. Differ. Geom. 77(1), 1–41 (2007)
    • 10. Christopher, C., Rousseau, C.: The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point....
    • 11. Dias, K.: Enumerating combinatorial classes of complex polynomial vector fields in C. Ergod. Theory Dyn. Syst. 33, 416–440 (2013)
    • 12. Dias, K., Tan, L.: On parameter space of complex polynomial vector fields in C. J. Differ. Equ. 260, 628–652 (2016)
    • 13. Douady, A., Estrada, F., Sentenac, P.: Champs de vecteurs polynomiaux sur C. Unpublished manuscript
    • 14. Fathi, A., Laudenbach, F., Poenaru, V.: Traveaux de thurston sur les surfaces. Asterisque, pp. 66–67 (1979)
    • 15. Gardiner, F.P., Hu, J.: Finite earthquakes and the associahedron. In: Teichmüller theory and moduli problems, pp. 179–194 (2010)
    • 16. Garijo, A., Gasull, A., Jarque, X.: Normal forms for singularities of one dimentional holomorphic vector fields. Electron. J. Differ....
    • 17. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)
    • 18. Hájek, O.: Notes on meromorphic dynamical systems, I. Czech. Math. J. 16(1), 14–27 (1966)
    • 19. Hájek, O.: Notes on meromorphic dynamical systems, II. Czech. Math. J. 16(1), 28–35 (1966)
    • 20. Hájek, O.: Notes on meromorphic dynamical systems, III. Czech. Math. J. 16(1), 36–40 (1966)
    • 21. Jenkins, J.: Univalent Functions. Springer, Berlin (1958)
    • 22. Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of third order. Can. J. Math. 56(2), 310–343...
    • 23. Mardeši´c, P., Roussarie, R., Rousseau, C.: Modulus of analytic classification for unfoldings of generic parabolic diffeomorphisms. Mosc....
    • 24. Muciño-Raymundo, J., Valero-Valdés, C.: Bifurcations of meromorphic vector fields on the Riemann sphere. Ergod. Theory Dyn. Syst. 15(6),...
    • 25. Needham, D., King, A.: On meromorphic complex differential equations. Dyn. Stab. Syst. 9, 99–121 (1994)
    • 26. Neumann, D.: Classification of continuous flows on 2-manifolds. Proc. Am. Math. Soc. 48(1), 73–81 (1975)
    • 27. Oudkerk, R.: The parabolic implosion for f _0(z) = z + zν+1 + o(zν+2). Ph.D. thesis, University of Warwick (1999)
    • 28. Rousseau, C.: Analytic moduli for unfoldings of germs of generic analytic diffeomorphims with a codimension k parabolic point. Ergod....
    • 29. Rousseau, C., Teyssier, L.: Analytical moduli for unfoldings of saddle-node vector fields. Mosc. Math. J. 8(3), 547–614 (2008)
    • 30. Shishikura, M.: Bifurcation of parabolic fixed points. In: Lei, T. (ed.) The Mandelbrot Set, Theme and Variations. Cambridge University...
    • 31. Sverdlove, R.: Vector fields defined by complex functions. J. Differ. Equ. 34, 427–439 (1979)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno