EN ESTA TESIS SE PRESENTA UN NUEVO ESTIMADOR DE ERROR PARA EL METODO DE LOS ELEMENTOS FINITOS, SE TRATA DE UN ESTIMADOR RESIDUAL BASADO EN LA PROYECCION DEL ERROR SOBRE ESPACIOS DE FUNCIONES CON SOPORTE LOCAL. EL CALCULO DE LA ESTIMA SE REALIZA EN DOS FASES, UNA PRIMERA QUE TIENE EN CUENTA EL RESIDUO INTERIOR A LOS ELEMENTOS Y UNA SEGUNDA QUE INCLUYE EL EFECTO DE LOS SALTOS DE FLUJO A TRAVES DE LOS LADOS. AMBAS FASES SE CALCULAN RESOLVIENDO PROBLEMAS LOCALES UTILIZANDO EL METODO DE LOS ELEMENTOS FINITOS CON SUBMALLAS QUE DISCRETIZAN PEQUEÑOS SUBDOMINIOS. LA ESTIMA QUE PROPORCIONA ESTE METODO INFRAVALORA EL ERROR EXACTO PERO SE AJUSTA A ESTE SATISFACTORIAMENTE. EL ESTIMADOR SE GENERALIZA DE MANERA NATURAL A PROBLEMAS NO LINEALES, UTILIZANDO UNA APROXIMACION TANGENTE.
SE PROPONE, ADEMAS, UN METODO DE ANALISIS DEL ESTIMADOR BASADO EN ESTUDIAR SU COMPORTAMIENTO FRENTE A UN ERROR ALEATORIO.
EL ESTIMADOR SE APLICA EN PROCESOS DE REMALLADO ADAPTABLE. EN ESTE CONTEXTO SE PRESENTA UNA VISION UNIFICADA DE LAS DIFERENTES ESTRATEGIAS DE REMALLADO QUE PERMITE, ADEMAS, INTRODUCIR UN NUEVO CRITERIO DE REMALLADO.
EL ESTIMADOR QUE SE HA PRESENTADO SE BASA EN CALCULOS LOCALES Y, POR TANTO, NO PERMITE CAPTAR EL ERROR DE CONTAMINACION. A PARTIR DE ESTE ESTIMADOR LOCAL SE PRESENTA UN METODO DE ESTIMA GLOBAL QUE PERMITE MEJORAR LA APROXIMACION AL ERROR TENIENDO EN CUENTA LOS EFECTOS DE CONTAMINACION.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados