Ir al contenido

Documat


Resumen de Improving water network management by efficient division into supply clusters

Antonio Manuel Herrera Fernández Árbol académico

  • El agua es un recurso escaso que, como tal, debe ser gestionado de manera eficiente. Así, uno de los propósitos de dicha gestión debiera ser la reducción de pérdidas de agua y la mejora del funcionamiento del abastecimiento. Para ello, es necesario crear un marco de trabajo basado en un conocimiento profundo de la redes de distribución. En los casos reales, llegar a este conocimiento es una tarea compleja debido a que estos sistemas pueden estar formados por miles de nodos de consumo, interconectados entre sí también por miles de tuberías y sus correspondientes elementos de alimentación. La mayoría de las veces, esas redes no son el producto de un solo proceso de diseño, sino la consecuencia de años de historia que han dado respuesta a demandas de agua continuamente crecientes con el tiempo. La división de la red en lo que denominaremos clusters de abastecimiento, permite la obtención del conocimiento hidráulico adecuado para planificar y operar las tareas de gestión oportunas, que garanticen el abastecimiento al consumidor final. Esta partición divide las redes de distribución en pequeñas sub-redes, que son virtualmente independientes y están alimentadas por un número prefijado de fuentes. Esta tesis propone un marco de trabajo adecuado en el establecimiento de vías eficientes tanto para dividir la red de abastecimiento en sectores, como para desarrollar nuevas actividades de gestión, aprovechando esta estructura dividida. La propuesta de desarrollo de cada una de estas tareas será mediante el uso de métodos kernel y sistemas multi-agente. El spectral clustering y el aprendizaje semi-supervisado se mostrarán como métodos con buen comportamiento en el paradigma de encontrar una red sectorizada que necesite usar el número mínimo de válvulas de corte. No obstante, sus algoritmos se vuelven lentos (a veces infactibles) dividiendo una red de abastecimiento grande.


Fundación Dialnet

Mi Documat