SE HA EFECTUADO UN ESTUDIO DE LA CONVERGENCIA DEL METODO ITERATIVO DE RESOLUCION DE SISTEMAS LINEALES MULTIMALLA APLICADO A ESQUEMAS OBTENIDOS MEDIANTE LA DISCRETIZACION POR ELEMENTOS FINITOS DE TIPO PETROV-GALERKIN DE PROBLEMAS DE CONTORNO DE PERTURBACION SINGULAR, INSISTIENDO ESPECIALMENTE EN EL HECHO DE QUE LAS MATRICES RESULTANTES SEAN NO SIMETRICAS, LOS RESULTADOS OBTENIDOS HAN PERMITIDO DAR CONDICIONES DE CONVERGENCIA SIMULTANEAMENTE PARA EL CASO DEL V-CICLO Y DEL W-CICLO, LA FUNDAMENTAL DE LAS CUALES PRESENTA UNA RELACION ENTRE LAS NORMAS DE LOS OPERADORES DEL METODO CUYA VERIFICACION SE HA ANALIZADO PARA LOS PROBLEMAS CONCRETOS ESTUDIADOS.
FINALMENTE, SE HA INTRODUCIDO UN NUEVO METODO DE DISCRETIZACION PARA ALGUNOS OPERADORES NO LINEALES (QUE HEMOS DENOMINADO METODO ADJUNTO), DEMOSTRANDO A CONTINUACION LA EXISTENCIA Y UNICIDAD DE SOLUCION DEL ESQUEMA RESULTANTE E ILUSTRADO SU APLICACION (ASI COMO LA DE OTROS METODOS) CON ALGUNOS EJEMPLOS NUMERICOS.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados