La idea de dotar a un grupo de robots o agentes artificiales de un lenguaje ha sido objeto de intenso estudio en las ultimas décadas. Como no podía ser de otra forma los primeros intentos se enfocaron hacia el estudio de la emergencia de vocabularios compartidos convencionalmente por el grupo de robots. Las ventajas que puede ofrecer un léxico común son evidentes, como también lo es que un lenguaje con una estructura más compleja, en la que se pudieran combinar palabras, sería todavía más beneficioso. Surgen así algunas propuestas enfocadas hacia la emergencia de un lenguaje consensuado que muestre una estructura sintáctica similar al lenguaje humano, entre las que se encuentra este trabajo. Tomar el lenguaje humano como modelo supone adoptar algunas de las hipótesis y teorías que disciplinas como la filosofía, la psicología o la lingüística entre otras se han encargado de proponer. Según estas aproximaciones teóricas el lenguaje presenta una doble dimension formal y funcional. En base a su dimensión formal parece claro que el lenguaje sigue unas reglas, por lo que el uso de una gramática se ha considerado esencial para su representación, pero también porque las gramáticas son un dispositivo muy sencillo y potente que permite generar fácilmente estructuras simbólicas. En cuanto a la dimension funcional se ha tenido en cuenta la teoría quizá más influyente de los últimos tiempos, que no es otra que la Teoría de los Actos del Habla. Esta teoría se basa en la idea de Wittgenstein por la que el significado reside en el uso del lenguaje, hasta el punto de que éste se entiende como una manera de actuar y de comportarse, en definitiva como una forma de vida. Teniendo presentes estas premisas en esta tesis se pretende experimentar con modelos computacionales que permitan a un grupo de robots alcanzar un lenguaje común de manera autónoma, simplemente mediante interacciones individuales entre los robots, en forma de juegos de lenguaje. Para ello se proponen tres modelos distintos de lenguaje: • Un modelo basado en gramáticas probabilísticas y aprendizaje por refuerzo en el que las interacciones y el uso del lenguaje son claves para su emergencia y que emplea una gramática generativa estática y diseñada de antemano. Este modelo se aplica a dos grupos distintos: uno formado exclusivamente por robots y otro que combina robots y un humano, de manera que en este segundo caso se plantea un aprendizaje supervisado por humanos. • Un modelo basado en evolución gramatical que permite estudiar no solo el consenso sintáctico, sino también cuestiones relativas a la génesis del lenguaje y que emplea una gramática universal a partir de la cual los robots pueden evolucionar por sí mismos la gramática más apropiada según la situación lingüística que traten en cada momento. • Un modelo basado en evolución gramatical y aprendizaje por refuerzo que toma aspectos de los anteriores y amplia las posibilidades de los robots al permitir desarrollar un lenguaje que se adapta a situaciones lingüísticas dinámicas que pueden cambiar en el tiempo y también posibilita la imposición de restricciones de orden muy frecuentes en las estructuras sintácticas complejas. Todos los modelos implican un planteamiento descentralizado y auto-organizado, de manera que ninguno de los robots es el dueño del lenguaje y todos deben cooperar y colaborar de forma coordinada para lograr el consenso sintáctico. En cada caso se plantean experimentos que tienen como objetivo validar los modelos propuestos, tanto en lo relativo al éxito en la emergencia del lenguaje como en lo relacionado con cuestiones paralelas de importancia, como la interacción hombre-máquina o la propia génesis del lenguaje. ABSTRACT The idea of giving a language to a group of robots or artificial agents has been the subject of intense study in recent decades. The first attempts have focused on the development and emergence of a conventionally shared vocabulary. The advantages that can provide a common vocabulary are evident and therefore a more complex language that combines words would be even more beneficial. Thus some proposals are put forward towards the emergence of a consensual language with a sintactical structure in similar terms to the human language. This work follows this trend. Taking the human language as a model means taking some of the assumptions and theories that disciplines such as philosophy, psychology or linguistics among others have provided. According to these theoretical positions language has a double formal and functional dimension. Based on its formal dimension it seems clear that language follows rules, so that the use of a grammar has been considered essential for representation, but also because grammars are a very simple and powerful device that easily generates these symbolic structures. As for the functional dimension perhaps the most influential theory of recent times, the Theory of Speech Acts has been taken into account. This theory is based on the Wittgenstein’s idea about that the meaning lies in the use of language, to the extent that it is understood as a way of acting and behaving. Having into account these issues this work implements some computational models in order to test if they allow a group of robots to reach in an autonomous way a shared language by means of individual interaction among them, that is by means of language games. Specifically, three different models of language for robots are proposed: • A reinforcement learning based model in which interactions and language use are key to its emergence. This model uses a static probabilistic generative grammar which is designed beforehand. The model is applied to two different groups: one formed exclusively by robots and other combining robots and a human. Therefore, in the second case the learning process is supervised by the human. • A model based on grammatical evolution that allows us to study not only the syntactic consensus, but also the very genesis of language. This model uses a universal grammar that allows robots to evolve for themselves the most appropriate grammar according to the current linguistic situation they deal with. • A model based on grammatical evolution and reinforcement learning that takes aspects of the previous models and increases their possibilities. This model allows robots to develop a language in order to adapt to dynamic language situations that can change over time and also allows the imposition of syntactical order restrictions which are very common in complex syntactic structures. All models involve a decentralized and self-organized approach so that none of the robots is the language’s owner and everyone must cooperate and work together in a coordinated manner to achieve syntactic consensus. In each case experiments are presented in order to validate the proposed models, both in terms of success about the emergence of language and it relates to the study of important parallel issues, such as human-computer interaction or the very genesis of language.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados