SE OBTIENEN RESULTADOS DE BIFURCACION DE SOLUCIONES PERIODICAS PARA UNA ECUACIONDE EVOLUCION SOBRE UN ESPACIO DE BANACH, ESTOS RESULTADOS GENERALIZAN A LOS EXISTENTES EN LA LITERATURA CON HIPOTESIS MAS RESTRICTIVAS QUE LAS NUESTRAS.
EN PRIMER LUGAR REDUCIMOS EL PROBLEMA ORIGINAL AL CALCULO DE LOS CEROS DE UN OPERADOR INFINITO-DIMENSIONAL. DESPUES VIA UNA DESCOMPOSICION DE LYAPUNOV-SCHMIDT Y EL TEOREMA DE FUNCIONES IMPLICITAS SE REDUCE EL PROB. ORIG. AL CALCULO DE LOS CEROS DE UN DETERMINADO OPERADOR FINITO-DIMENSIONAL (ECUACION DE BIFURCACION). SE DAN RESULTADOS EN TERMINOS DE LOS PRIMEROS TERMINOS QUE APARECEN EN LA ECUACION DE BIFURCACION Y SE ANALIZAN LOS DE MAYOR ORDEN CON VISTAS A DAR CONDICIONES NECESARIAS Y POSTERIORMENTE SUFICIENTES. FINALMENTE APLICAMOS LOS RESULTADOS OBTENIDOS A ALGUNOS REPRESENTATIVOS EJEMPLOS.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados