La memoria se enmarca en el ambito de la geometria de los espacios de banach, para un tal espacio x estudiamos las siguientes propiedades: la propiedad de representacion convexa (cada punto de la bola unidad de x, b(x), se expresa como combinacion convexa de puntos extremos); la lambda-propiedad (cada punto de b(x) es suma de una serie convexa infinita de puntos extremos); la propiedad de bade (cada punto de b(x) es limite de combinaciones convexas de puntos extremos). Los principales resultados se obtienen en espacios c(t,x) de funciones continuas y acotadas definidas en un espacio completamente regular t y con valores en un espacio de banach estrictamente convexo x. Suponiendo que la dimension de x es mayor o igual que 2, probamos que las dos primeras propiedades son equivalentes y que, a su vez, equivalen a una propiedad de extension de funciones continuas, que es automatica si x es de dimension infinita y que, para x finito-dimensional, se materializa en la condicion dim(t) dim(x), donde dim(t) es la dimension de cech-lebesgue de t. Se prueba ademas, que c(t,x) tiene la propiedad de bade, cualesquiera que sean t y x, con dimension de x mayor o igual que 2, finita o infinita.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados