Ir al contenido

Documat


Polinomios ortogonales matriciales: teoría y aplicaciones

  • Autores: Emilio Defez Candel Árbol académico
  • Directores de la Tesis: Lucas Antonio Jódar Sánchez (dir. tes.) Árbol académico
  • Lectura: En la Universitat Politècnica de València ( España ) en 1996
  • Idioma: español
  • Tribunal Calificador de la Tesis: Antonio Marquina Vila (presid.) Árbol académico, León Atilano González Sotos (secret.) Árbol académico, Francisco Marcellán Español (voc.) Árbol académico, Enrique Navarro Torres (voc.) Árbol académico, Theodore Chihara (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • EN ESTA MEMORIA SE INTRODUCE EL CONCEPTO DE ORTOGNALIDAD DE UNA SUCESION DE POLINOMIOS MATRICIALES RESPECTO A FUNCIONALES LINEALES, U BILINEALES CONJUGADOS MATRICIALES, DICHOS CONCEPTOS ESTRUCTURAN LAS FAMILIAS DE POLINOMIOS MATRICIALES DE LAGUERRE, HERMITE Y GEGENBAUER, INTRODUCIDAS EN LOS DOS ULTIMOS AÑOS.

      PROPIEDADES IMPORTANTES COMO LA RELACION DE TRES TERMINOS, EL TEOREMA DE FAVARD O LA FORMULA DE CHRISTOFFEL-DARBOUX SE EXTIENDEN PARA ESTE CONCEPTO DE ORTOGONALIDAD.

      EL CONCEPTO DE FUNCIONAL BILINEAL MATRICIAL DEFINIDO POSITIVO PERMITE EXTENDER EL CONCEPTO DE ORTOGONALIDAD A ESPACIOS DE FUNCIONES MAS GENERALES, DE UN ESPACIO DE BANACH, QUE EN EL CASO ESCALAR COINCIDE CON EL ESPACIO DE HILBERT CLASICO DE LAS FUNCIONES CUADRADO INTEGRABLE RESPECTO A UNA FUNCION PESO.

      EL PROBLEMA DE LA MEJOR APROXIMACION MATRICIAL INTRODUCE DE MANERA NATURAL EL CONCEPTO DE SERIE DE FOURIER MATRICIAL RESPECTO A UNA SUCESION DE POLINOMIOS ORTOGONALES MATRICIALES. ANALOGOS MATRICIALES DE LAS DESIGUALDADES DE BESSEL-PARSEVAL Y DEL LEMA DE RIEMMAN-LEBESGUE SON DEMOSTRADOS, ASI COMO LA TOTALIDAD DE FAMILIAS DE POLINOMIOS MATRICIALES.

      LOS RESULTADOS SON APLICADOS A LA OBTENCION DE FORMULAS DE CUADRATURA MATRICIAL CON OBTENCION DE COTAS DE ERROR, Y A LA OBTENCION DE TEOREMAS DE DESARROLLO EN SERIE DE POLINOMIOS DE HERMITE MATRICIALES.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno