Ir al contenido

Documat


Resumen de Arquitectura cognitiva híbrida para la navegación autónoma de UAVs mediante mapas topológicos visuales

Juan Pablo Fuentes Brea

  • El objetivo fundamental de la presente tesis doctoral es el diseño de una arquitectura cognitiva, que pueda ser empleada para la navegación autónoma de vehículos aéreos no tripulados conocidos como UAV (Unmanned Aerial Vehicle). Dicha arquitectura cognitiva se apoya en la definición de una librería de comportamientos, que aportarán la inteligencia necesaria al UAV para alcanzar los objetivos establecidos, en base a la información sensorial recopilada del entorno de operación. La navegación autónoma del UAV se apoyará en la utilización de un mapa topológico visual, consistente en la definición de un grafo que engloba mediante nodos los diferentes landmarks ubicados en el entorno, y que le servirán al UAV de guía para alcanzar su objetivo. Los arcos establecidos entre los nodos del mapa topológico, le proporcionarán de la información necesaria para establecer el rumbo más adecuado para alcanzar el siguiente landmark a visitar, siguiendo siempre una secuencia lógica de navegación, basada en la distancia entre un determinado landmark con respecto al objetivo final ó landmark destino. La arquitectura define un mecanismo híbrido de control, el cual puede conmutar entre dos diferentes modos de navegación. El primero es el denominado como Search Mode, el cual se activará cuando el UAV se encuentre en un estado desconocido dentro del entorno, para lo cual hará uso de cálculos basado en la entropía para la búsqueda de posibles landmarks. Se empleará como estrategia novedosa la idea de que la entropía de una imagen tiene una correlación directa con respecto a la probabilidad de que dicha imagen contenga uno ó varios landmarks. De esta forma, la estrategia para la búsqueda de nuevos landmarks en el entorno, se basará en un proceso continuo de maximización de la entropía. Si por el contrario el UAV identifica la existencia de un posible landmark entre los definidos en su mapa topológico, se considerará que está sobre un estado conocido, por lo que se conmutará al segundo modo de navegación denominado como Homing Mode, el cual se encargará de calcular señales de control para la aproximación del UAV al landmark localizado. Éste último modo implementa un control dual basado en dos tipos de controladores (FeedForward/FeedBack) que mediante su combinación, aportarán al UAV señales de control cada vez más óptimas, además de llevar a cabo un entrenamiento continuo y en tiempo real. Para cumplir con los requisitos de ejecución y aprendizaje en tiempo real de la arquitectura, se han tomado como principales referencias dos paradigmas empleados en diferentes estudios dentro del área de la robótica, como son el paradigma de robots de desarrollo (developmental robots) basado en un aprendizaje del robot en tiempo real y de forma adaptativa con su entorno, así como del paradigma de modelos internos (internal models) basado en los resultados obtenidos a partir de estudios neurocientíficos del cerebelo humano; dicho modelo interno sirve de base para la construcción del control dual de la arquitectura. Se presentarán los detalles de diseño e implementación de los diferentes módulos que componen la arquitectura cognitiva híbrida, y posteriormente, los diferentes resultados obtenidos a partir de las pruebas experimentales ejecutadas, empleando como UAV la plataforma robótica aérea de AR.Drone. Como resultado final se ha obtenido una validación completa de la arquitectura cognitiva híbrida objetivo de la tesis, cumplimento con la totalidad de requisitos especificados y garantizando su viabilidad como aplicación operativa en el mundo real. Finalmente, se muestran las distintas conclusiones a las cuales se ha llegado a partir de los resultados experimentales, y se presentan las diferentes líneas de investigación futuras que podrán ser ejecutadas.


Fundación Dialnet

Mi Documat