Ir al contenido

Documat


Fórmulas multipasos y aproximación W-Spline en el tratamiento numérico de ecuaciones diferenciales

  • Autores: María Cruz López de Silanes Busto Árbol académico
  • Directores de la Tesis: José Manuel Correas Dobato (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Zaragoza ( España ) en 1983
  • Idioma: español
  • Tribunal Calificador de la Tesis: Manuel Calvo Pinilla (presid.) Árbol académico, José Manuel Correas Dobato (secret.) Árbol académico, Rafael Cid Palacios (voc.) Árbol académico, Mariano Gasca González (voc.) Árbol académico, Vicente Camarena Badia (voc.) Árbol académico
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • LA PRESENTE MEMORIA CONSTA DE UNA INTRODUCCION CUATRO CAPITULO CONCLUSIONES Y UNA BIBLIOGRAFIA, EN EL CAPITULO I SE ESTUDIAN LAS PROPIEDADES FUNDAMENTALES DE LAS FUNCIONES DE STUMPFF MODIFICADAS Y SE CONSTRUYEN DIVERSAS FORMULAS INTERPOLATORIAS GENERALIZADAS. EN EL CAPITULO II SE DEFINE LA CLASE DE FUNCIONES W-SPLINE CONSTRUIDA MEDIANTE LAS FUNCIONES DE STUMPFF MODIFICADAS ESTABLECIENDO RELACIONES DE CONSISTENCIA QUE PERMITEN CONECTAR CON FORMULAS MULTIPASOS LINEALES CON COEFICIENTES VARIABLES. SE PLANTEAN Y RESUELVEN PROBLEMAS DE INTERPOLACION W-SPLINE CUADRATICA Y CUBICA. EL CAPITULO III ESTA DEDICADO AL ANALISIS DE CONDICIONES EXTREMO DEL TIPO MULTIPASOS LINEALES PARA EL PROBLEMA DE INTERPOLACION W-SPLINE CUBICA. EN EL CAPITULO IV SE ESTUDIAN APLICACIONES DE LAS FUNCIONES W-SPLINE AL TRATAMIENTO NUMERICO DE PROBLEMAS DE VALOR INICIAL Y DE CONTORNO EN DOS PUNTOS PARA ECUACIONES DIFERENCIALES ORDINARIAS.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno