Ir al contenido

Documat


Resumen de Continuous fields of c-algebras, their cuntz semigroup and the geometry of dimension fuctions

Joan Bosa Puigredon Árbol académico

  • Aquesta tesi doctoral tracta sobre C*-àlgebres i els seus invariants de Teoria K. Ens hem centrat principalment en l’estructura d’una classe de C*-àlgebres anomenada camps continus i l’estudi d’un dels seus invariants: el semigrup de Cuntz. Més concretament, analitzem el següent: (1)- Estructura dels camps continus : A la literatura hi ha dos exemples que donen una idea clara sobre la complexitat dels camps continus de C*-àlgebres. El primer va ser construït per M. Dadarlat i G. A. Elliott al 2007 i és un camp continu A sobre l’interval unitat amb fibres mútuament isomorfes, Teoria K no finitament generada i que no és localment trivial enlloc. El segon exemple mostra que, fins i tot quan la Teoria K de les fibres s’anul·la, el camp pot ser no trivial enlloc si l’espai base té dimensió infinita (Dadarlat, 2009). Veient aquests exemples és natural preguntar-se quina és l’estructura dels camps continus d’àlgebres de Kirchberg sobre un espai de dimensió finita, amb fibres mútuament isomorfes i Teoria K finitament generada. Tractem aquesta qüestió al Capítol 2 de la memòria. (2)- El semigrup de Cuntz de camps continus : Per a C*-àlgebres de dimensió baixa sense obstruccions cohomològiques, una descripció del seu semigrup de Cuntz, a través d’avaluació puntual, s’ha obtingut en termes de funcions semicontínues sobre l’expectre que prenen valors en els enters positius estesos (Robert, 2009). Per camps més generals la clau està en descriure l’aplicació següent: _: Cu(A) ! Q x2X Cu(Ax) donada per _hai = (ha(x)i)x2X; on Cu(Ax) és el semigrup de Cuntz de la fibra Ax. En el Capítol 3 de la memòria, l’aplicació _ s’estudia en el cas que X tingui dimensió petita i totes les fibres de la C(X)-àlgebra A no són necessàriament isomorfes entre sí. Més concretament, demostrem que és possible recuperar el semigrup de Cuntz d’una classe adequada de camps continus com el semigrup de seccions globals de tx2XCu(Ax) a X. Això s’utilitza posteriorment per reescriure un resultat de classificació degut a Dadarlat, Elliott i Niu (2012) utilitzant un sol invariant en comptes d’un feix de grups. (3)-Funcions de dimensió en una C*-algebra : L’estudi de funcions de dimensió va ser iniciat per Cuntz a 1978, i desenvolupat posteriorment per Blackadar i Handelman al 1982. En el seu article van aparèixer dues preguntes naturals: decidir si l’espai afí de funcions de dimensió és un símplex, i si també el conjunt de funcions de dimensió semicontínues inferiorment és dens a l’espai de totes les funcions de dimensió. En el Capítol 4 calculem el rang estable d’algunes classes de camps continus i això ens ajuda a provar que les dues conjectures anteriors tenen resposta afirmativa per camps continus A sobre espais de dimensió 1 i amb hipòtesis febles en les seves fibres.


Fundación Dialnet

Mi Documat