Albert Vilamala Muñoz
Malignant tumours of the brain represent one of the most difficult to treat types of cancer due to the sensitive organ they affect. Clinical management of the pathology becomes even more intricate as the tumour mass increases due to proliferation, suggesting that an early and accurate diagnosis is vital for preventing it from its normal course of development. The standard clinical practise for diagnosis includes invasive techniques that might be harmful for the patient, a fact that has fostered intensive research towards the discovery of alternative non-invasive brain tissue measurement methods, such as nuclear magnetic resonance. One of its variants, magnetic resonance imaging, is already used in a regular basis to locate and bound the brain tumour; but a complementary variant, magnetic resonance spectroscopy, despite its higher spatial resolution and its capability to identify biochemical metabolites that might become biomarkers of tumour within a delimited area, lags behind in terms of clinical use, mainly due to its difficult interpretability. The interpretation of magnetic resonance spectra corresponding to brain tissue thus becomes an interesting field of research for automated methods of knowledge extraction such as machine learning, always understanding its secondary role behind human expert medical decision making. The current thesis aims at contributing to the state of the art in this domain by providing novel techniques for assistance of radiology experts, focusing on complex problems and delivering interpretable solutions. In this respect, an ensemble learning technique to accurately discriminate amongst the most aggressive brain tumours, namely glioblastomas and metastases, has been designed; moreover, a strategy to increase the stability of biomarker identification in the spectra by means of instance weighting is provided. From a different analytical perspective, a tool based on signal source separation, guided by tumour type-specific information has been developed to assess the existence of different tissues in the tumoural mass, quantifying their influence in the vicinity of tumoural areas. This development has led to the derivation of a probabilistic interpretation of some source separation techniques, which provide support for uncertainty handling and strategies for the estimation of the most accurate number of differentiated tissues within the analysed tumour volumes. The provided strategies should assist human experts through the use of automated decision support tools and by tackling interpretability and accuracy from different angles
© 2008-2024 Fundación Dialnet · Todos los derechos reservados