Roberto Yus Peirote
En los últimos años el interés por la computación móvil ha crecido debido al incesante uso de dispositivos móviles (por ejemplo, smartphones y tablets) y su ubicuidad. El bajo coste de dichos dispositivos unido al gran número de sensores y mecanismos de comunicación que equipan, hace posible el desarrollo de sistemas de información útiles para sus usuarios. Utilizando un cierto tipo especial de sensores, los mecanismos de posicionamiento, es posible desarrollar Servicios Basados en la Localización (Location-Based Services o LBS en inglés) que ofrecen un valor añadido al considerar la localización de los usuarios de dispositivos móviles para ofrecerles información personalizada. Por ejemplo, se han presentado numerosos LBS entre los que se encuentran servicios para encontrar taxis, detectar amigos en las cercanías, ayudar a la extinción de incendios, obtener fotos e información de los alrededores, etc. Sin embargo, los LBS actuales están diseñados para escenarios y objetivos específicos y, por lo tanto, están basados en esquemas predefinidos para el modelado de los elementos involucrados en estos escenarios. Además, el conocimiento del contexto que manejan es implícito; razón por la cual solamente funcionan para un objetivo específico. Por ejemplo, en la actualidad un usuario que llega a una ciudad tiene que conocer (y comprender) qué LBS podrían darle información acerca de medios de transporte específicos en dicha ciudad y estos servicios no son generalmente reutilizables en otras ciudades. Se han propuesto en la literatura algunas soluciones ad hoc para ofrecer LBS a usuarios pero no existe una solución general y flexible que pueda ser aplicada a muchos escenarios diferentes. Desarrollar tal sistema general simplemente uniendo LBS existentes no es sencillo ya que es un desafío diseñar un framework común que permita manejar conocimiento obtenido de datos enviados por objetos heterogéneos (incluyendo datos textuales, multimedia, sensoriales, etc.) y considerar situaciones en las que el sistema tiene que adaptarse a contextos donde el conocimiento cambia dinámicamente y en los que los dispositivos pueden usar diferentes tecnologías de comunicación (red fija, inalámbrica, etc.). Nuestra propuesta en la presente tesis es el sistema SHERLOCK (System for Heterogeneous mobilE Requests by Leveraging Ontological and Contextual Knowledge) que presenta una arquitectura general y flexible para ofrecer a los usuarios LBS que puedan serles interesantes. SHERLOCK se basa en tecnologías semánticas y de agentes: 1) utiliza ontologías para modelar la información de usuarios, dispositivos, servicios, y el entorno, y un razonador para manejar estas ontologías e inferir conocimiento que no ha sido explicitado; 2) utiliza una arquitectura basada en agentes (tanto estáticos como móviles) que permite a los distintos dispositivos SHERLOCK intercambiar conocimiento y así mantener sus ontologías locales actualizadas, y procesar peticiones de información de sus usuarios encontrando lo que necesitan, allá donde esté. El uso de estas dos tecnologías permite a SHERLOCK ser flexible en términos de los servicios que ofrece al usuario (que son aprendidos mediante la interacción entre los dispositivos), y de los mecanismos para encontrar la información que el usuario quiere (que se adaptan a la infraestructura de comunicación subyacente).
© 2008-2024 Fundación Dialnet · Todos los derechos reservados