Ir al contenido

Documat


Resumen de Robust image segmentation applied to magnetic resonance and ultrasound images of the prostate

Soumya Ghose

  • Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and image guided prostate biopsies. The objective of this thesis is to develop computationally efficient prostate segmentation algorithms in both TRUS and MRI image modalities. In this thesis we propose a probabilistic learning approach to achieve a soft classification of the prostate for automatic initialization and evolution of a deformable model for prostate segmentation. Two deformable models are developed for the TRUS segmentation. An explicit shape and region prior based deformable model and an implicit deformable model guided by an energy minimization framework. Besides, in MRI, the posterior probabilities are fused with the soft segmentation coming from an atlas segmentation and a graph cut based energy minimization achieves the final segmentation. In both image modalities, statistically significant improvement are achieved compared to current works in the literature.


Fundación Dialnet

Mi Documat