Ir al contenido

Documat


Resumen de Programación lógica difusa para la gestión flexible de documentos XML. (Fuzzy Logic Programming for the Flexible Management of XML Documents)

Alejandro Luna Tedesqui

  • Resumen Esta tesis presenta una extensión del popular lenguaje XPath, que ofrece respuestas una lista de respuestas ordenadas a una consulta flexible aprovechando las variantes difusas de los operadores and, or y avg para las condiciones XPath, así como dos restricciones estructurales, llamadas down y deep, para el que se asocia un cierto grado de relevancia. En la práctica, este grado es muy bajo para algunas respuestas obtenidas con la consulta original, y por lo tanto, no deberian ser calculadas, con el fin de aliviar la complejidad computacional del proceso de recuperación de información. Con el fin de mejorar la escalabilidad de nuestro intérprete para hacer frente a archivos XML grandes, hacemos uso de la capacidad de la programación lógica difusa para descartar de forma anticipada los cálculos que conducen a soluciones poco significativas (es decir, con un pobre grado de relevancia según las preferencias expresadas por los usuarios cuando usan el nuevo comando FILTER). Nuestra propuesta se ha implementado en un lenguaje lógico difuso, aprovechando los altos recursos expresivos de este paradigma declarativo para la gestion de ¿umbrales dinámicos¿ de una manera natural y eficiente. Además de utilizar nuestro entorno FLOPER para desarrollar el intérprete, también proponemos su implementación con el lenguaje estándar XQuery. Básicamente, definimos una biblioteca XQuery capaz de gestionar de forma difusa expresiones XPath, de tal manera que nuestro FuzzyXPath puede ser codificado como expresiones XQuery. Las ventajas de nuestro enfoque es que cualquier interprete XQuery puede manipular una versión borrosa de XPath mediante el uso de la biblioteca que hemos implementado. Por otro lado, se presenta un método para depurar consultas XPath, describiendo cómo las expresiones XPath puede manipularse para obtener un conjunto de consultas alternativas que coincidan con un documento XML determinado. Para cada nueva consulta, damos un ¿chance degree¿ que representa una estimación de su desviación con respecto a la expresión inicial. Nuestro trabajo se centra en proi ii porcionar a los programadores un repertorio de alternativas (que contienen nuevos comandos como las etiquetas ¿JUMP/DELETE/SWAP¿) que se pueden utilizar para obtener mas respuestas. Nuestro depurador es capaz, de la misma manera que el intérprete, de gestionar grandes documentos XML haciendo uso del comando FILTER que ignora de forma anticipada cálculos que conducen a soluciones no significativas (es decir, con un ¿chance degree¿ muy rebajado, según las preferencias del usuario). El punto clave, nuevamente, es la capacidad natural para realizar ¿umbralizacion dinámica¿ que ofrece el lenguaje lógico difuso usado para implementar la herramienta, conectando asi de alguna manera con el llamado «top-k answering problem» muy conocido en la lógica difusa y el soft-computing (o computación flexible). En cuanto a nuevas aplicaciones no estandares, en el último bloque de esta tesis reforzamos las sinergias bilaterales entre FuzzyXPath y FLOPER. En particular, nos ocupamos de fórmulas proposicionales difusas que contienen varios símbolos proposicionales vinculados con conectivos definidos en un retículo de grados de verdad más complejos que Bool. En primer lugar, recordamos un método basado en SMT (Satisfiability Modulo Theories) difuso para demostrar automáticamente teoremas en relevantes logicas con infinitos valores (incluyendo a las de ¿ukasiewicz y Gödel ). A continuación, en lugar de centrarnos en cuestiones de satisfactibilidad (es decir, demostrar la existencia de al menos un modelo) como normalmente se hace en un entorno SAT/SMT, nuestro interés se traslada al problema de encontrar un conjunto de modelos (sobre un dominio finito) para una fórmula difusa dada. Reutilizaremos un método anterior basado en la programación lógica difusa donde la fórmula se concibe como un objetivo de un árbol de derivación, proporcionado por nuestra herramienta FLOPER, que contiene en sus ramas todos los modelos de la fórmula original, junto con otras interpretaciones (obtenidas tras interpretar de forma exsaustiva cada simbolo proposicional de todas las formas posibles con respecto a un conjunto de valores recogidos en un reticulo subyacente de grados-deverdad). A continuación utilizamos la capacidad de la herramienta FuzzyXPath para explorar estos árboles de derivación una vez exportados a formato XML, con el fin de detectar automáticamente si la fórmula es una tautología, satisfactible o una contradicción. Contents 1 Introduction 1 1.1 Objectives and structure of the Thesis . . . . . . . . . . . . . . . . . 1 1.2 Fuzzy logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Fuzzy sets, aggregators and fuzzy implications . . . . . . . . 5 1.2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 Logic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.4 Fuzzy logic programming . . . . . . . . . . . . . . . . . . . . . . . . 25 1.5 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Multi-adjoint Logic Programming and the FLOPER System 35 2.1 Multi-Adjoint Logic Programming . . . . . . . . . . . . . . . . . . . 36 2.1.1 MALP Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.1.2 MALP Procedural Semantics . . . . . . . . . . . . . . . . . . 40 2.1.3 Interpretive Steps and Cost Measures . . . . . . . . . . . . . 42 2.2 The ¿Fuzzy LOgic Programming Environment for Research¿ . . . . . 46 2.2.1 Running Programs . . . . . . . . . . . . . . . . . . . . . . . . 50 2.2.2 Execution Trees . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.3 Managing Lattices . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2.4 Linguistic modifiers and linguistic variables . . . . . . . . . . 60 2.3 Extending Lattices and Declarative Traces . . . . . . . . . . . . . . . 63 3 The FuzzyXPath interpreter 71 3.1 A Flexible XPath Language . . . . . . . . . . . . . . . . . . . . . . . 72 3.2 Examples with DEEP and DOWN . . . . . . . . . . . . . . . . . . . 74 3.3 AVG Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.4 Thresholding Example . . . . . . . . . . . . . . . . . . . . . . . . . . 81 vii viii CONTENTS 3.5 Conjunctive/Disjunctive Connective Examples . . . . . . . . . . . . 82 3.6 Dynamic Filtering for Improving Efficiency . . . . . . . . . . . . . . 83 4 Implementation Issues 91 4.1 Multi-Adjoint Logic Programming and FuzzyXPath . . . . . . . . . 92 4.1.1 Multi-Adjoint Logic Programming . . . . . . . . . . . . . . . 92 4.1.2 MALP and FuzzyXPath . . . . . . . . . . . . . . . . . . . . 94 4.2 FuzzyXPath in FLOPER . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 XQuery Library FuzzyXPath . . . . . . . . . . . . . . . . . . . . . 106 4.3.1 Elements of the Library . . . . . . . . . . . . . . . . . . . . . 108 4.3.2 Implementation of the Library . . . . . . . . . . . . . . . . . 110 4.3.3 Examples of FuzzyXPath in XQuery . . . . . . . . . . . . . 111 4.3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 The FuzzyXPath debugger 117 5.1 Debugging XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.2 MALP and the XPath Debugger . . . . . . . . . . . . . . . . . . . . 125 5.3 Dynamic Filters for the Thresholded Debugging of Queries . . . . . 127 6 Applications 133 6.1 Exploring Derivation Trees with FuzzyXPath . . . . . . . . . . . . 134 6.2 FuzzyXPath for the Automatic Search of Fuzzy Formulae Models . 144 6.3 Looking for Models with FuzzyXPath . . . . . . . . . . . . . . . . 146 7 Conclusions and Future Work 155 Chapter 7 Conclusions and Future Work In this thesis we have described the foundations and implementation of a flexible extension based on fuzzy logic programming of the well-known XPath language. The new FuzzyXPath dialect takes profit of the underlying source MALP language for easily modeling a wide range of flexible operators representing different versions of conjunctions, disjunctions and other highly expressive hybrid operators for retrieving data from XML documents, as well as for constraining queries with structural and thresholding conditions. We have shown with examples how FuzzyXPath is able to express queries in which user preferences are encoded as combination of the defined flexible operators, as well as how the language ranks answers according to them. We have described the implementation which has been coded as a set of MALP rules developed under the FLOPER system. We have shown how the operators defined in FuzzyXPath have a correspondence in MALP, and how MALP is used to compute ranked answers. The main element of the implementation is the adoption of truth value trees for representing truth values in each node of an XML tree, which are used to compute the retrieval status value of each answer. Moreover, FuzzyXPath has been integrated in the MALP framework by providing semantics to fuzzy logic programs that work with trees with truth values. This has required to study the semantics of trees with truth values and operations on them in the context of multi-adjoint logic programming. Additionally, we have studied an XQuery based implementation of our proposed FuzzyXPath . An XQuery library has been implemented enabling the execution of FuzzyXPath expressions in an XQuery interpreter. The implementation in XQuery 155 156 Chapter 7. Conclusions and Future Work of FuzzyXPath required to introduce fuzzy connectives in the Boolean language XQuery, as well as represent and work with trees with truth values in XQuery. We have also studied an approach for XPath debugging. The result of the debugging process of a XPath expression is a set of alternative queries, each one associated to a chance degree. We have proposed JUMP, DELETE and SWAP operators that cover the main cases of programming errors when describing a path about a XML document. Our implemented and tested approach has a fuzzy taste in the sense that XPath expressions are debugged by relaxing the shape of path queries with chance degrees. Our debugging technique gives to programmers a chance degree for each proposed alternative by annotating wrong-points on XPath expressions. With regard to performance of the proposed FuzzyXPath language, a fuzzy command for filtering the set of ranked answers in a dynamic way has been studied, in order to reduce the runtime and complexity of computations when dealing with large files. Our idea was to create filters for prematurely disregarding those superfluous computations dealing with non-significant solutions. We have shown benchmarks of performance of our system, improved by dynamic filtering. Additionally, we have shown the mutual benefits between two different fuzzy tools developed in our research group, that is, the FLOPER programming environment and the FuzzyXPath interpreter. Initially FLOPER was conceived as a tool for implementing flexible software applications -as it is the case of FuzzyXPathcoded with the fuzzy logic language MALP and offering options for compiling fuzzy rules to standard Prolog clauses, running goals and drawing execution trees. Such trees, once modeled in XML format inside the proper FLOPER tool, can be then analyzed by the FuzzyXPath interpreter in order to discover details (such as fuzzy computed answers, possible infinite branches and so on) of the computational behavior of MALP programs after being executed into FLOPER. Moreover, we have applied this last capability of FuzzyXPath focusing exclusively on derivation trees associated to fuzzy formulae. As a result, we have presented an automatic technique useful for determining important features of such formulae (tautology, contradiction, etc...) by making use of XPath queries with a fuzzy taste. As future work we plan the following research lines. Firstly, we are interested to extend our FuzzyXPath with the handling of text content in the same line as Fulltext XPath [CDH+11]. In our current proposal, a string used in a query has exactly mach to the content of a node to be included in the answer. Full text XPath makes possible to use ¿fuzzy¿ versions of string matching to which an score is associated. 157 String comparison techniques have been largely studied in many other contexts, and they can be adapted to our work. Also, we would like to extend our FuzzyXPath with other fuzzy logic mechanism (vagueness, similarity, among others). Path and content matching in our proposed FuzzyXPath are merely syntactic, however using vague concepts and enabling similarity can lead to better results. In this line, we also find that MALP and FLOPER can be used in ontologies and the Semantic Web, following [Str05b, LS08, For11], making possible a semantic based matching of paths and content. Additionally, we are interested in top-k answering. Top-k answering has been already studied for fuzzy logic programming [SM12], and can be adapted to FLOPER. Top-k answering determines the top k answers to a query without computing the -usually wider, possibly infinite- whole set of solutions, which is strongly related with the FILTER command. Finally, we are interested to incorporate more mechanisms of searching, ranking, debugging and filtering to the standard XQuery language. Extensions of the proposed XQuery library can be implemented in the future to include other fuzzy mechanisms (vagueness, similarity, etc), as well as XQuery debugging (JUMP, DELETE and SWAP), and filtering (including Top-k answering). Bibliography [ABE08] J. M. Almendros-Jiménez, A. Becerra-Terón, F. J. Enciso-Baños. Querying XML documents in Logic Programming. Theory and Practice of Logic Programming 8(3):323¿361, 2008. [ABL+15] J. M. Almendros-Jiménez, M. Bofill, A. Luna, G. Moreno, C. Vázquez, M. Villaret. Fuzzy XPath for the Automatic Search of Fuzzy Formulae Models. In Scalable Uncertainty Management - 9th International Conference, SUM 2015, Québec City, QC, Canada, September 16-18, 2015. Proceedings. Pp. 385¿398. Springer LNCS, 2015. [ABMV12] C. Ansótegui, M. Bofill, F. Manyà, M. Villaret. Building Automated Theorem Provers for Infinitely-Valued Logics with Satisfiability Modulo Theory Solvers. In Proceedings of the 42nd IEEE International Symposium on Multiple-Valued Logic, ISMVL 2012. Pp. 25¿30. 2012. [Ack67] R. Ackerman. Introduction to Many Valued Logics. Dover, New York, 1967. [ACT95] C. Alsina, J. L. Castro, E. Trillas. On the characterization of S and R implications. In Proc. of the 6th International Fuzzy Systems Association World Congress, Sao Paulo. Volume 1, pp. 317¿319. 1995. [Acz48] J. Aczél. On mean values. Bulletin of the American Mathematical Society 54(2):392¿400, 1948. [Ada76] J. B. Adams. Probabilistic reasoning and certainty factors. Mathematical Biosciences 32:177¿186, 1976. [AF99] F. Arcelli, F. Formato. Likelog: A Logic Programming Language for Flexible Data Retrieval. In Proc. of the ACM Symposium on Applied Comput- 159 160 BIBLIOGRAPHY ing, SAC¿99, San Antonio. Pp. 260¿267. ACM, Artificial Intelligence and Computational Logic, 1999. [AF02] F. Arcelli, F. Formato. A similarity-based resolution rule. International Journal of Intelligent Systems 17(9):853¿872, 2002. [AG93] K. Atanassov, C. Georgiev. Intuitionistic fuzzy Prolog. Fuzzy Sets Systems 53(2):121¿128, 1993. [AG98] T. Alsinet, L. Godo. Fuzzy Unification Degree. In Proc. 2th International Workshop on Logic Programming and Soft Computing¿98, in conjunction with JICSLP¿98, Manchester. P. 18. 1998. [Alm09] J. M. Almendros-Jiménez. An Encoding of XQuery in Prolog. In Proceedings of the Sixth International XML Database Symposium XSym¿09. Pp. 145¿155. Springer, Lecture Notes in Computer Science 5679, Heildelberg, Germany, 2009. [ALM11a] J. Almendros-Jiménez, A. Luna, G. Moreno. A Flexible XPath-based Query Language Implemented with Fuzzy Logic Programming. In Bassiliades et al. (eds.), Proc. of 5th International Symposium on Rules: Research Based, Industry Focused, RuleML¿11. Barcelona, Spain, July 19¿21. Pp. 186¿193. Springer Verlag, Lectures Notes in Computer Science 6826, 2011. [ALM11b] J. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy Logic Programming for Implementing a Flexible XPath-based Query Language. In Arenas et al. (eds.), Proc. of XI Jornadas sobre Programación y Lenguajes, PROLE¿11, A Coruña, Spain, September 5-7. Pp. 154¿168. Universidade da Coruña (ISBN 978-84-9749-487-8), 2011. [ALM12a] J. Almendros-Jiménez, A. Luna, G. Moreno. A XPath Debugger based on Fuzzy Chance Degrees. In Herrero et al. (eds.), On the Move to Meaningful Internet Systems: OTM 2012 Workshops, Rome, Italy, September 10-14, 2012. Proceedings. Pp. 669¿672. Springer Verlag, Lectures Notes in Computer Science 7567, 2012. [ALM12b] J. Almendros-Jiménez, A. Luna, G. Moreno. Debugging Fuzzy XPath Queries. In Gallardo et al. (eds.), Actas de las XII Jornadas sobre Programación y Lenguajes, PROLE¿12, Jornadas SISTEDES, Almería, Spain, BIBLIOGRAPHY 161 September 17-19. Pp. 119¿133 (sección de trabajos en progreso). Universidad de Almería (ISBN:978-84-15487-27-2), 2012. [ALM12c] J. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy Logic Programming for Implementing a Flexible XPath-based Query Language. Electronic Notes in Theoretical Computer Science 282:3¿18, 2012. Extended version of [ALM11b]. [ALM13] J. Almendros-Jiménez, A. Luna, G. Moreno. Annotating Fuzzy Chance Degrees when Debugging XPath Queries. In Advances in Computational Intelligence - Proc of the 12th International Work-Conference on Artificial Neural Networks, IWANN 2013 (Special Session on Fuzzy Logic and Soft Computing Application), Tenerife, Spain, June 12-14. Pp. 300¿311. Springer Verlag, LNCS 7903, Part II, 2013. [ALM14a] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Dynamic Filtering of Ranked Answers When Evaluating Fuzzy XPath Queries. In Cornelis et al. (eds.), Rough Sets and Current Trends in Computing - 9th International Conference, RSCTC 2014, Granada and Madrid, Spain, July 9-13, 2014. Proceedings. Lecture Notes in Computer Science 8536, pp. 319¿330. Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08644-6_33 [ALM14b] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy XPath Queries in XQuery. In On the Move to Meaningful Internet Systems: OTM 2014 Conferences - Confederated International Conferences: CoopIS, and ODBASE 2014, Amantea, Italy, October 27-31, 2014, Proceedings. Pp. 457¿472. 2014. [ALM15a] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Fuzzy XPath through Fuzzy Logic Programming. New Generation Comput. 33(2):173¿209, 2015. [ALM15b] J. M. Almendros-Jiménez, A. Luna, G. Moreno. Thresholded Debugging of XPath Queries. In Proc. of the 2015 IEEE International Conference on Fuzzy Systems, FUZZIEEE¿15. Istanbul, Turkey, August 2-5, 2015, Pages 9. 2015. [ALMV13] J. M. Almendros-Jiménez, A. Luna, G. Moreno, C. Vázquez. Analyzing Fuzzy Logic Computations with Fuzzy XPath. In Fredlund and Cas162 BIBLIOGRAPHY tro (eds.), Actas de las XIII Jornadas sobre Programación y Lenguajes, PROLE¿13, Jornadas SISTEDES, Madrid, Spain, September 18-20. Pp. 136¿150. Universidad Complutense de Madrid (ISBN: 978-84-695- 8331-9), 2013. [ALMV15] J. M. Almendros-Jimenez, A. Luna, G. Moreno, C. Vazquez. Analyzing Fuzzy Logic Computations with Fuzzy XPath. Electronic Communications of the EASST (European Association of Software Science and Technology) 64:1¿19, 2015. [Apt90] K. R. Apt. Introduction to Logic Programming. In Leeuwen (ed.), Handbook of Theoretical Computer Science. Volume B: Formal Models and Semantics, pp. 493¿574. Elsevier, Amsterdam and The MIT Press, Cambridge, 1990. [Apt97] K. R. Apt. From Logic Programming to Prolog. International Series in Computer Science, Prentice Hall, 1997. [BBC+07] A. Berglund, S. Boag, D. Chamberlin, M. Fernandez, M. Kay, J. Robie, J. Siméon. XML path language (XPath) 2.0. W3C, 2007. [BMP95] J. F. Baldwin, T. P. Martin, B. W. Pilsworth. Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence. John Wiley & Sons, Inc., 1995. [BMVV13] M. Bofill, G. Moreno, C. Vázquez, M. Villaret. Automatic Proving of Fuzzy Formulae with Fuzzy Logic Programming and SMT. In Fredlund (ed.), Proc. of XIII Spanish Conference on Programming and Languages, PROLE¿2013, Madrid, Spain, September 18-20. Pp. 151¿165. ECEASST, 2013. [Bra00] I. Bratko. Prolog Programming for Artificial Intelligence. Addison Wesley, September 2000. [BSST09] C.W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli. SatisfiabilityModulo Theories. In Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications 185, pp. 825¿885. IOS Press, 2009. [Cao00] T. H. Cao. Annotated fuzzy logic programs. Fuzzy Sets and Systems 113(2):277¿298, 2000. BIBLIOGRAPHY 163 [CBM99] T. Calvo, B. D. Baets, R. Mesiar.Weighted sums of aggregation operators. Mathware & soft computing 6(1):33¿47, 1999. [CDH+11] P. Case, M. Dyck, M. Holstege, S. Amer-Yahia, C. Botev, S. Buxton, J. Doerre, J. Melton, M. Rys, J. Shanmugasundaram. XQuery and XPath Full Text 1.0. W3C, 2011. [CF95] C. Carlsson, R. Fullér. On fuzzy screening system. In Mainz (ed.), Proc. of the 3th European Congress on Intelligent Techniques and Soft Computing, EUFIT¿95, Aachen. Pp. 1261¿1264. 1995. [CFF97] C. Carlsson, R. Fullér, S. Fullér. Possibility and necessity in weighted aggregation. In Yager and Kacprzyk (eds.), The ordered weighted averaging operators: Theory, Methodology and Applications. Pp. 18¿28. Kluwer Academic Publishers, 1997. [Cha58] C. C. Chang. Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88:467¿490, 1958. [CHHM01] O. Cordón, F. Herrera, F. Hoffmann, L. Magdalena. Genetic Fuzzy Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. In Advances in Fuzzy Systems Applications and Theory. Volume 19. World Scientific, 2001. [CKKM02] T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar. Aggregation operators: properties, classes and construction methods. In Calvo et al. (eds.), Aggregation operators: new trends and applications. Pp. 3¿104. Physica- Verlag GmbH, Heidelberg, 2002. [Coh85] P. R. Cohen. Heuristic reasoning about uncertainty: an artificial intelligence approach. Pitman Publishing, Inc., Marshfield, Massachusetts, 1985. [CRR08] R. Caballero, M. Rodríguez-Artalejo, C. A. Romero-Díaz. Similarity-based reasoning in qualified logic programming. In PPDP¿08: Proc. of the 10th international ACM SIGPLAN conference on Principles and practice of declarative programming. Pp. 185¿194. ACM, New York, 2008. [CRR10] R. Caballero, M. Rodríguez, C. A. Romero. A Transformation-based Implementation for CLP with Qualification and Proximity. CoRR abs/1009.1976, 2010. 164 BIBLIOGRAPHY [DHN90] R. O. Duda, P. E. Hart, N. J. Nilsson. Subjective Bayesian methods for rule-based inference systems. In Readings in uncertain reasoning. Pp. 274¿ 281. Morgan Kaufmann Publishers Inc., San Francisco, 1990. [DHR96] D. Driankov, H. Hellendoorn, M. Reinfrank. An introduction to control fuzzy. Springer-Verlag, 1996. [DM00] C. V. Damásio, L. Moniz-Pereira. Hybrid Probabilistic Logic Programs as Residuated Logic Programs. In JELIA ¿00: Proc. of the European Workshop on Logics in Artificial Intelligence. Pp. 57¿72. Springer-Verlag, London, 2000. [DM01a] C. V. Damásio, L.Moniz-Pereira. Antitonic Logic Programs. In Proc. of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR¿01, Vienna. Pp. 379¿392. Springer-Verlag, 2001. [DM01b] C. V. Damásio, L. Moniz-Pereira. Monotonic and residuated logic programs. In Benferhat and Besnard (eds.), Proc. of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU¿01, Toulouse. Pp. 748¿759. Lecture Notes in Artificial Intelligence 2143, 2001. [DM02] C. V. Damásio, L. Moniz-Pereira. Hybrid Probabilistic Logic Programs as Residuated Logic Programs. Lecture Notes in Computer Science 1919:57¿ 72, 2002. [DM04] C. V. Damásio, L. Moniz-Pereira. Sorted Monotonic Logic Programs and their Embeddings. In Proc. of the 10th International Conference on Information Processing and Managment of Uncertainty in Knowledge-Based Systems, IPMU¿04, Perugia. Pp. 807¿814. 2004. [DMO04a] C. V. Damásio, J. Medina, M. Ojeda-Aciego. Sorted multi-adjoint logic programs: termination results and applications. In Proc. of Logics in Artificial Intelligence, JELIA¿04, Lisbon. Pp. 260¿273. Lecture Notes in Artificial Intelligence 3229, 2004. [DMO04b] C. V. Damásio, J. Medina, M. Ojeda-Aciego. A tabulation proof procedure for residuated logic programming. In Proc. of the European Conference on Artificial Intelligence, Frontiers in Artificial Intelligence and Applications 110:808¿812, 2004. BIBLIOGRAPHY 165 [DMO07] C. V. Damásio, J. Medina, M. Ojeda-Aciego. Termination of logic programs with imperfect information: applications and query procedure. Journal of Appplied Logic 5:435¿458, 2007. [DP80] D. Dubois, H. Prade. Fuzzy Sets and Systems: Theory and Applications. Academic Press, 1980. [DP84] D. Dubois, H. Prade. Criteria aggregation and ranking of alternatives in the framework of fuzzy set theory. TIMS Studies in the Management Sciences 20:209¿240, 1984. [DP85] D. Dubois, H. Prade. A review of fuzzy sets aggregation connectives. Information Sciences 36:85¿121, 1985. [DP86] D. Dubois, H. Prade.Weighted minimun and maximum operations in fuzzy sets theory. Information Sciences 39:205¿210, 1986. [DSMK07] F. Durante, C. Sempi, R. Mesiar, E. P. Klement. Conjunctors and their residual implicators: characterizations and construction methods. Mediterranean Journal of Mathematics 4(3):343¿356, 2007. [vE86] M. H. van Emden. Quantitative Deduction and its Fixpoint Theory. Journal of Logic Programming 3(1):37¿53, 1986. [FC98] J. Fodor, T. Calvo. Aggregation functions defined by t-norms and tconorms. In Bouchon-Meunier (ed.), Aggregation and Fusion of Imperfect Information. Pp. 36¿48. Physica Verlag, 1998. [FGS00] F. Formato, G. Gerla, M. I. Sessa. Similarity-based Unification. Fundamenta Informaticae 40(4):393¿414, 2000. [Fit91] M. Fitting. Bilattices and the semantics of logic programming. Journal of Logic Programming 11:91¿116, 1991. [For11] A. Formica. Semantic Web search based on rough sets and Fuzzy Formal Concept Analysis. Knowledge-Based Systems, 2011. [FR92] J. Fodor, M. Roubens. Aggregation and scoring procedures in multicriteria decision making methods. In Proc. of the IEEE International Conference on Fuzzy Systems 1992. Pp. 1261¿1267. 1992. 166 BIBLIOGRAPHY [FY94] J. Fodor, R. R. Yager. Fuzzy Preference Modelling and Multicriteria Decision Support. In Theory and Decision Library, Series D, System Theory, Knowlege engineering and Problem Solving. Volume 14. Kluwer Academic, Kluwer, 1994. [Ger01] G. Gerla. Fuzzy control as a fuzzy deduction system. Fuzzy Sets and Systems 121(3):409¿425, 2001. [Ger05] G. Gerla. Fuzzy Logic Programming and fuzzy control. Studia Logica 79:231¿254, 2005. [Gin88] M. L. Ginsberg. Multi-valued logics: a uniform approach to reasoning in artificial intelligence. Computational Intelligence 4:265¿316, 1988. [GM08] J. Guerrero, G. Moreno. Optimizing Fuzzy Logic Programs by Unfolding, Aggregation and Folding. Electronic Notes in Theoretical Computer Science 219:19¿34, 2008. [GMV04] S. Guadarrama, S. Muñoz, C. Vaucheret. Fuzzy Prolog: A New Approach Using Soft Constraints Propagation. Fuzzy Sets and Systems, Elsevier 144(1):127¿150, 2004. [Gog69] J. A. Goguen. The logic of inexact concepts. Synthese 19:325¿373, 1969. [Grü14] C. Grün. BaseX. The XML Database. 2014. http://basex.org. [GS00] D. Gilbert, M. Schroeder. FURY: Fuzzy unification and resolution based on edit distance. In Proc of BIBE2000. 2000. [H¿98] P. Hájek. Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, 1998. [Haj06] P. Hajek. Fuzzy Logic. In Zalta (ed.), The Stanford Encyclopedia of Philosophy (Summer 2008 Edition). The MRL and the CSLI, Stanford University, 2006. [Her30] J. Herbrand. Recherches sur la Theorie de la Demostration. Travaoux de la Societe des Sciences et des Lettres de Varsovie, 1930. [HHV96] F. Herrera, E. Herrera-Viedma, J. L. Verdegay. Direct approach processes in group decision making using linguistic OWA operators. Fuzzy Sets and Systems 79(2):175¿190, 1996. BIBLIOGRAPHY 167 [Hin86] C. Hinde. Fuzzy prolog. International Journal Man-Machine Studies 24:569¿595, 1986. [IK85] M. Ishizuka, N. Kanai. Prolog-ELF incorporating fuzzy logic. In Joshi (ed.), Proc. of the 9th International Joint Conference on Artificial Intelligence, IJCAI¿85. Los Angeles, 1985. Pp. 701¿703. Morgan Kaufmann, 1985. [JA07] P. Julián, M. Alpuente. Programación Lógica. Teoría y Práctica. Pearson Educación, S.A., Madrid, 2007. [Jen04] S. Jenei. How to construct left-continuous triangular norms: state of the art. Fuzzy Sets and Systems 143:27¿45, 2004. [Jen06] S. Jenei. On the convex combination of left-continuous t-norms. Aequationes Mathematicae 72:47¿59, 2006. [JM03] S. Jenei, F. Montagna. A general method for constructing left-continuous t-norms. Fuzzy Sets and Systems 136:263¿282, 2003. [JMM+13] P. Julián, J. Medina, P. Morcillo, G. Moreno, M. Ojeda-Aciego. An Unfolding-Based Preprocess for Reinforcing Thresholds in Fuzzy Tabulation. In IWANN (1). Pp. 647¿655. 2013. [] P. Julián, J. Medina, G. Moreno, M. Ojeda. Combining Tabulation and Thresholding Techniques for Executing Multi-adjoint Logic Programs. In Magdalena et al. (eds.), In Proc. of the 12th International Conference on Information Processing and Management of Uncertainty in Knoledge-based Systems, IPMU¿08, June 22-27, 2008, Málaga. Pp. 550¿512. U. Málaga ISBN 978-84-612-3061-7, 2008. [JMMO10] P. Julián, J. Medina, G. Moreno, M. Ojeda. Efficient Thresholded Tabulation for Fuzzy Query Answering. Studies in Fuzziness and Soft Computing (Foundations of Reasoning under Uncertainty) 249:125¿141, 2010. (Versión extendida de [? ]). [JMP05] P. Julián, G. Moreno, J. Penabad. On Fuzzy Unfolding. A Multi-Adjoint Approach. Fuzzy Sets and Systems, Elsevier 154:16¿33, 2005. 168 BIBLIOGRAPHY [] P. Julián, G. Moreno, J. Penabad. Operational/Interpretive Unfolding of Multi-adjoint Logic Programs. In López-Fraguas (ed.), Actas de las V Jornadas sobre Programación y Lenguajes, PROLE¿05, Granada, Septiembre 14-16. Pp. 239¿248. Universidad de Granada, 2005. [JMP06] P. Julián, G. Moreno, J. Penabad. Operational/Interpretive Unfolding of Multi-adjoint Logic Programs. Journal of Universal Computer Science 12:1679¿1699, 2006. Extended version of [? ]. [JMP07] P. Julián, G. Moreno, J. Penabad. Measuring the Interpretive Cost in Fuzzy Logic Computations. In all (ed.), Proc. of 7th. International Whorkshop on Fuzzy Logic and Applications WILF¿07, Portofino, July 07-10. Pp. 28¿36. Springer Verlag, Lectures Notes in Artificial Intelligence 4578, 2007. [JMP09] P. Julián, G. Moreno, J. Penabad. On the Declarative Semantics of Multi- Adjoint Logic Programs. In al (ed.), Bio-Inspired Systems: Computational and Ambient Intelligence, Proc. of 10th International Work-Conference on Artificial Neural Networks, IWANN¿09, Salamanca, June 10-12, 2009. Lecture Notes in Computer Science 5517, pp. 253¿260. Springer, 2009. [JR06a] P. Julián, C. Rubio. Introducing Fuzzy Unification into the Warren Abstract Machine. In Sirlantzis (ed.), In Proc. of the 6th International Conference on Recent Advances in Soft Computing, RASC¿06. Canterbury, UK, July 10-12. Pp. 36¿41. University of Kent, 2006. (ISBN: 978-1-902671-42- 0). [JR06b] P. Julián, C. Rubio. A WAM Implementation for Flexible Query Answering. In Pobil (ed.), In Proc. of the 10th IASTED International Conference on Artificial Intelligence and Soft Computing, ASC¿06, August 28-30, 2006, Palma de Mallorca. Pp. 262¿267. ACTA Press, 2006. [JR09a] P. Julián, C. Rubio. A declarative semantics for Bousi~Prolog. In Porto and López-Fraguas (eds.), Proc. of the 11th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, PPDP¿09, September 7-9, 2009, Coimbra. Pp. 149¿160. ACM, 2009. [JR09b] P. Julián, C. Rubio. A Similarity-Based WAM for Bousi~Prolog. In al (ed.), Bio-Inspired Systems: Computational and Ambient Intelligence, BIBLIOGRAPHY 169 Proc. of 10th International Work-Conference on Artificial Neural Networks, IWANN¿09, Salamanca, June 10-12, 2009. Lecture Notes in Computer Science 5517, pp. 245¿252. Springer, 2009. [JR09c] P. Julián, C. Rubio. UNICORN: A Programming Environment for Bousi~Prolog. In P. Lucio and Peña (eds.), Actas de las IX Jornadas sobre Programación y Lenguajes, PROLE¿09, San Sebastián, Septtiembre 8-11. Pp. 99¿108. Universidad del País Vasco, 2009. ISBN 978-84-692-4600-9. [JR10a] P. Julián, C. Rubio. BOUSI PROLOG - A Fuzzy Logic Programming Language for Modeling Vague Knowledge and Approximate Reasoning. In International Conference on Fuzzy Computation, Proc. of ICFC¿10, Valencia. P. 10. INSTICC¿The Institute for Systems and Technologies of Information, Control and Communication, 2010. [JR10b] P. Julián, C. Rubio. An Efficient Fuzzy Unification Method and its Implementation into the Bousi~Prolog System. In IEEE (ed.), 2010 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE¿10, July 18-23, Barcelona. Pp. 658¿665. 2010. [JRG08] P. Julián, C. Rubio, J. Gallardo. Bousi~Prolog: a Prolog extension language for flexible query answering. In Almendros (ed.), Actas de los VIII Jornadas sobre Programación y Lenguajes, PROLE¿08, Gijón, Octubre 7- 10. Pp. 41¿55. Fundación Universidad de Oviedo, 2008. ISBN 978-84-612- 5819-2. [JRG09a] P. Julián, C. Rubio, J. Gallardo. Bousi~Prolog: a Prolog Extension Language for Flexible Query Answering. Electronic Notes in Theoretical Computer Science 248:131¿147, 2009. [JRG09b] P. Julián, C. Rubio, J. Gallardo. Inclusión de Conjuntos Borrosos en el Núcleo del Lenguaje Bousi~Prolog. In Mateos (ed.), Proc. of the First Workshop on Computational Logics and Artificial Intelligence, CLAI¿09, Sevilla, November 9. Pp. 81¿90. Universidad de Sevilla, 2009. [JRG10] P. Julián, C. Rubio, J. Gallardo. Inclusión de Conjuntos Borrosos en el Núcleo del Lenguaje Bousi~Prolog. In al. (ed.), Actas del XV Congreso Español de Tecnología y Lógica Fuzzy, ESTYLF¿10, 3 a 5 de Febrero, Huelva. 170 BIBLIOGRAPHY Pp. 211¿216. Universidad de Huelva, 2010. ISBN 978-84-92944-02-6 (Versión extendida de [JRG09b]). [Jul00] P. Julián. Especialización de Programas Lógico-Funcionales Perezosos. Departamento de Sistemas Informáticos y Computación, Universidad Politécnica de Valencia. Tesis Doctoral, 2000. [Jul04] P. Julián. Lógica simbólica para informáticos. RA-MA, Madrid, 2004. [KK94] F. Klawonn, R. Kruse. A ¿ukasiewicz logic based Prolog. Mathware & Soft Computing 1(1):5¿29, 1994. [KK99] A. Kolesárová, M. Komorníková. Triangular norm-based iterative compensatory operators. Fuzzy Sets and Systems 104(1):109¿120, 1999. [KL88] M. Kifer, A. Li. On the Semantics of Rule-Based Expert Systems with Uncertainty. In Proc. of the 2th International Conference on Database Theory, ICDT¿88. Pp. 102¿117. Springer-Verlag, London, 1988. [KL90] M. Kay, S. Limited. Ten reasons why Saxon XQuery is fast. IEEE Data Engineering Bulletin, 1990. [KLV02] S. Kraj¿i, R. Lencses, P. Vojtáš. A data model for annotated programs. ADBIS Research Communications, pp. 141¿154, 2002. [KLV04] S. Kraj¿i, R. Lencses, P. Vojtáš. A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144:173¿192, 2004. [KMP04] E. P. Klement, R.Mesiar, E. Pap. Triangular norms. General constructions and parameterized families. Fuzzy Sets and Systems 145(1):411¿438, 2004. [Kow74] R. A. Kowalski. Predicate Logic as a Programming Language. Information Processing 74:569¿574, 1974. [KS92] M. Kifer, V. Subrahmanian. Theory of generalized annotated logic programming and its applications. Journal of Logic Programming 12:335¿367, 1992. [KY95] G. J. Klir, B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice-Hall, 1995. [Lee72] R. C. T. Lee. Fuzzy Logic and the Resolution Principle. Journal of the ACM 19(1):119¿129, January 1972. BIBLIOGRAPHY 171 [Lin65] C. Ling. Representation of associative functions. Publicationes Mathematicae Debrecen 12:189¿212, 1965. [LL90] D. Li, D. Liu. A fuzzy Prolog database system. John Wiley & Sons, Inc., 1990. [Llo87] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. Second edition. [LMM88] J. L. Lassez, M. J. Maher, K. Marriott. Unification Revisited. In Minker (ed.), Foundations of Deductive Databases and Logic Programming. Pp. 587¿625. Morgan Kaufmann, Los Altos, 1988. [LS94] L. V. S. Lakshmanan, F. Sadri. Probabilistic Deductive Databases. In Symposium on Logic Programming. Pp. 254¿268. 1994. [LS01a] L. V. S. Lakshmanan, F. Sadri. On a theory of probabilistic deductive databases. Theory and Practice of Logic Programming 1(1):5¿42, 2001. [LS01b] L. V. S. Lakshmanan, N. Shiri. A Parametric Approach to Deductive Databases with Uncertainty. IEEE Transactions on Knowledge and Data Engineering 13(4):554¿570, 2001. [LS02a] Y. Loyer, U. Straccia. Uncertainty and Partial Non-uniform Assumptions in Parametric Deductive Databases. In Proc. of the European Conference on Logics in Artificial Intelligence. Pp. 271¿282. Springer-Verlag, London, 2002. [LS02b] Y. Loyer, U. Straccia. The Well-Founded Semantics in Normal Logic Programs with Uncertainty. In Proc. of the 6th International Symposium on Functional and Logic Programming. Pp. 152¿166. Springer-Verlag, London, 2002. [LS03] Y. Loyer, U. Straccia. The Approximate Well-founded Semantics for Logic Programs with Uncertainty. In Proc. of the 28th International Symposium on Mathematical Foundations of Computer Science. Volume 2747, pp. 541¿ 550. Lecture Notes in Computer Science, 2003. [LS04] Y. Loyer, U. Straccia. Epistemic Foundation of the Well-Founded Semantics over Bilattices. In Proc. of the 29th International Symposium on 172 BIBLIOGRAPHY Mathematical Foundations of Computer Science, MFCS¿04. Volume 3153, pp. 513¿524. Springer, Heidelberg, 2004. [LS05] Y. Loyer, U. Straccia. Approximate Well-founded Semantics, Query Answering and Generalized Normal Logic Programs over Lattices. Technical report ISTI-2005-TR-xx, I.S.T.I. - C.N.R., 2005. [LS06] Y. Loyer, U. Straccia. Epistemic foundation of stable model semantics. Theory and Practice of Logic Programming 6(4):355¿393, 2006. [LS08] T. Lukasiewicz, U. Straccia. Managing uncertainty and vagueness in description logics for the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6(4):291¿308, 2008. [LSS01] V. Loia, S. Senatore, M. I. Sessa. Similarity-based SLD Resolution and Its Implementation in An Extended Prolog System. In Proc. of the 10th IEEE International Conference of Fuzzy Systems FUZZ-IEEE¿01, Melbourne. Pp. 650¿653. 2001. [Lu96] J. J. Lu. Logic programming with signs and annotations. Journal of Logic and Computation 6(6):755¿778, 1996. [Luk01] T. Lukasiewicz. Probabilistic logic programming with conditional constraints. ACM Transactions on Computational Logic 2(3):289¿339, 2001. [Mam93] E. Mamdani. Twenty Years of Fuzzy Control: Experiences Gained and Lessons Learnt. In Proc. of the 2th IEEE International Conference on Fuzzy Systems. Pp. 339¿344. 1993. [MBP87] T. P. Martin, J. F. Baldwin, B. W. Pilsworth. The implementation of fprolog¿a fuzzy prolog interpreter. Fuzzy Sets Systems 23(1):119¿129, 1987. [MC97] G. Mayor, T. Calvo. Extended aggregation functions. In Proc. Seventh International Fuzzy Systems Association congress, IFSA¿97, Prague. Volume I, pp. 281¿285. Academy Sciences, 1997. [MCS09] S. Muñoz-Hernández, V. P. Ceruelo, H. Strass. RFuzzy: An Expressive Simple Fuzzy Compiler. In Cabestany et al. (eds.), Proc. of 10th International Work-Conference on Artificial Neural Networks, IWANN¿09. Lecture Notes in Computer Science 5517, pp. 270¿277. Springer, 2009. BIBLIOGRAPHY 173 [MCS11] S. Muñoz-Hernández, V. P. Ceruelo, H. Strass. RFuzzy: Syntax, semantics and implementation details of a simple and expressive fuzzy tool over Prolog. Information Sciences 181(10):1951¿1970, 2011. [Mei03] W. Meier. eXist: An open source native XML database. In Web, Web- Services, and Database Systems. Pp. 169¿183. Springer, 2003. [Miz89a] M. Mizumoto. Pictorial representations of fuzzy connectives, part I: cases of t-norms, t-conorms and averaging operators. Fuzzy Sets and Systems 31(2):217¿242, 1989. [Miz89b] M. Mizumoto. Pictorial representations of fuzzy connectives, part II: cases of compensatory operators and self-dual operators. Fuzzy Sets and Systems 32(1):45¿79, 1989. [MM08] P. Morcillo, G. Moreno. Programming with Fuzzy Logic Rules by Using the FLOPER Tool. In Proc. of Rule Representation, Interchange and Reasoning on the Web, International Symposium, RuleML¿08, Orlando, October 30-31. Pp. 119¿126. Springer, Lectures Notes in Computer Science 5321, 2008. [MM09a] P. Morcillo, G. Moreno. Modeling Interpretive Steps in Fuzzy Logic Computations. In Gesù et al. (eds.), Proc. of the 8th Int. Workshop on Fuzzy Logic and Applications, WILF¿09. Palermo, June 9-12. Pp. 44¿51. Springer Verlag, Lectures Notes in Artificial Intelligence 5571, 2009. [MM09b] P. Morcillo, G. Moreno. On Cost Estimations for Executing Fuzzy Logic Programs. In Arabnia et al. (eds.), Proc. of the 2009 International Conference on Artificial Intelligence, ICAI¿09, July 13-16, 2009, Las Vegas Nevada, USA. Pp. 217¿223. CSREA Press, 2009. [MMPV10a] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. A Practical Management of Fuzzy Truth Degrees using FLOPER. In al. (ed.), Proc. of 4th International Symposium on Rule Interchange and Applications, RuleML¿10. Washington, October 21¿23. Lecture Notes in Computer Science 6403, pp. 119¿126. Springer Verlag, Lectures Notes in Computer Science 6403, 2010. [MMPV10b] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Modeling Interpretive Steps into the FLOPER Environment. In Arabnia et al. (eds.), Proc. of 174 BIBLIOGRAPHY the 2010 International Conference on Artificial Intelligence, ICAI¿10, July 12-15, 2010, 2 Volumes. Pp. 16¿22. CSREA Press, 2010. [MMPV11a] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Declarative Traces into Fuzzy Computed Answers. In Bassiliades et al. (eds.), Proc. of 5th International Symposium on Rules: Research Based, Industry Focused, RuleML¿11. Barcelona, July 19¿21. Pp. 170¿185. Springer Verlag, Lectures Notes in Computer Science 6826, 2011. [MMPV11b] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Fuzzy Computed Answers Collecting Proof Information. In al. (ed.), Advances in Computational Intelligence - Proc of the 11th International Work-Conference on Artificial Neural Networks, IWANN¿11. Pp. 445¿452. Springer Verlag, Lectures Notes in Computer Science 6692, 2011. [MMPV12a] P. Morcillo, G. Moreno, J. Penabad, C. Vázquez. Dedekind-MacNeille completion and Cartesian product of multi-adjoint lattices. International Journal of Computer Mathematics 89(13-14):1742¿1752, 2012. [MMPV12b] G. Moreno, P. J. Morcillo, J. Penabad, C. Vázquez. String-based Multiadjoint Lattices for Tracing Fuzzy Logic Computations. Electronic Communications of the European Association of Software Science and Technology (EASST) 55:1¿17, 2012. [MO02] J. Medina, M. Ojeda-Aciego. A new approach to completeness for multiadjoint logic programming. In Proc. of 9th Information Processing and Management of Uncertainty in Knowledge-Based Systems Conference, IPMU¿02, Annecy. 2002. [MO04] J. Medina, M. Ojeda-Aciego. Multi-adjoint logic programming. In In Proc. of the 10th International Conference on Information Processing and Managment of Uncertainty in Knowledge-Based Systems, IPMU¿04, Perugia. Pp. 823¿830. 2004. [MOR05] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño. Fuzzy logic programming via multilattices: first results and prospects. In Proc. of Lógica Fuzzy & Soft Computing, LFSC¿05, Granada. Pp. 19¿26. Thomson, 2005. [MOR06a] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño. On the ideal semantics of multilattice-based logic programs. In Proc. of the 11th International BIBLIOGRAPHY 175 Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU¿06, Paris. Pp. 463¿470. 2006. [Mor06b] G. Moreno. Building a Fuzzy Transformation System. In Wiedermann et al. (eds.), Proc. of the 32th Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM¿06. Merin, January 21-27. Pp. 409¿418. Springer Lectures Notes in Computer Science 3831, 2006. [MOR07a] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño. A fixed-point theorem for multi-valued functions with application to multilattice-based logic programming. Lecture Notes in Artificial Intelligence 4578:37¿44, 2007. [MOR07b] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño. Fuzzy logic programming via multilattices. Fuzzy Sets and Systems 158(6):674¿688, 2007. [MOR07c] J. Medina, M. Ojeda-Aciego, J. Ruiz-Calviño. On reachability of minimal models of multilattice-based logic programming. Lecture Notes in Artificial Intelligence 4827:271¿282, 2007. [MOV01a] J. Medina, M. Ojeda-Aciego, P. Vojtas. A completeness theorem for multi-adjoint logic programming. In Proc. of 10th IEEE International Conference on Fuzzy Systems, IEEE Press, Melbourne. Volume 2, pp. 1031¿ 1034. 2001. [MOV01b] J. Medina, M. Ojeda-Aciego, P. Vojtás. A Multi-adjoint Logic Approach to Abductive Reasoning. In Proc. of the 17th International Conference on Logic Programming, EPIA¿01, Lectures Notes in Artificial Intelligence 2258. Pp. 269¿283. Springer-Verlag, London, 2001. [MOV01c] J. Medina, M. Ojeda-Aciego, P. Vojtás. A Procedural Semantics for Multi-adjoint Logic Programming. In Proc. of the 10th Portuguese Conference on Artificial Intelligence on Progress in Artificial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Programming and Constraint Solving, EPIA¿01, Lectures Notes in Artificial Intelligence 2258. Pp. 290¿ 297. London, 2001. [MOV01d] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Multi-adjoint logic programming with continuous semantics. In Proc. of Logic Programming and Non- Monotonic Reasoning, LPNMR¿01, Vienna, Lecture Notes in Artificial Intelligence 2173. Pp. 351¿364. 2001. 176 BIBLIOGRAPHY [MOV04] J. Medina, M. Ojeda-Aciego, P. Vojtáš. Similarity-based Unification: a multi-adjoint approach. Fuzzy Sets and Systems, Elsevier 146:43¿62, 2004. [MSD89] M. Mukaidono, Z. Shen, L. Ding. Fundamentals of Fuzzy Prolog. International Journal Approximate Reasoning 3(2):179¿193, 1989. [MTK99] B. Moser, E. Tsiporkova, E. P. Klement. Convex combination in terms of triangular norms: a characterization of idempotent, bisymmetrical and self-dual compensatory operators. Fuzzy Sets and Systems, Special Issue: Triangular norms 104:97¿108, 1999. [Muk82] M. Mukaidono. Fuzzy inference of resolution style. Fuzzy Sets and Possibility Theory, pp. 224¿231, 1982. [Ngu02] H. T. Nguyen. A First Course in Fuzzy and Neural Control. CRC Press, Inc., Boca Raton, 2002. [NPM99] V. Novak, I. Perfilieva, J. Mockor. Mathematical principles of fuzzy logic. Kluwer, Boston, 1999. [NS91] R. Ng, V. S. Subrahmanian. Stable Model Semantics for Probabilistic Deductive Databases. In Proc. of the 6th International Symposium on Methodologies for Intelligent Systems, ISMIS¿91. Pp. 162¿171. Springer-Verlag, Charlotte, 1991. [NS92] R. Ng, V. S. Subrahmanian. Probabilistic logic programming. Information and Computation 101(2):150¿201, 1992. [NW06] H. T. Nguyen, E. Walker. A First Course in Fuzzy Logic. Chapman & Hall/CRC, Boca Ratón, 2006. third edition. [Pav79] J. Pavelka. On fuzzy logic I, II, III. Zeitschrift fur Mathemathische Logik und Grundlagen der Mathematik 25:45¿52, 119¿134, 447¿464, 1979. [PDH97] R. Palmn, D. Driankov, H. Hellendoorn. Model-Based Fuzzy Control. Springer-Verlag, 1997. [Pen10] J. Penabad. Desplegado de Programas Lógicos Difusos. Departamento de Sistemas Informáticos, Universidad de Castilla-La Mancha. Tesis Doctoral, Junio 2010. BIBLIOGRAPHY 177 [PG98] W. Pedrycz, F. Gomide. Introduction to fuzzy sets. MIT Press, Cambridge, 1998. [PS05] G. Pajares, M. Santos. Inteligencia Artificial e Ingeniería del Conocimiento. Ra-Ma, 2005. [RD08] M. Rodríguez-Artalejo, C. R. Diaz. Quantitative logic programming revisited. Springer Lectures Notes in Computer Science 4989, pp. 272¿288, 2008. [Rob65] J. Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal of the ACM 12(1):23¿41, January 1965. [RR08a] M. Rodríguez-Artalejo, C. A. Romero-Díaz. A declarative semantics for clp with qualification and proximity. Theory and Practice of Logic Programing 10:627¿642, 2008. [RR08b] M. Rodríguez-Artalejo, C. A. Romero-Díaz. Quantitative Logic Programming Revisited. In Proc. of the 9th International Symposium on Functional and Logic Programming, FLOPS¿08. Pp. 272¿288. Springer-Verlag, Lecture Notes in Computer Science 4989, 2008. [RR09] M. Rodríguez-Artalejo, C. A. Romero-Díaz. Qualified Logic Programming with Bivalued Predicates. Electronic Notes in Theoretical Computer Science 248:67¿82, 2009. [Rub11] C. Rubio. Diseño e Implementación de un Lenguaje de Programación Lógica Borrosa con Unificación Débil. Departamento de Tecnologías y Sistemas de Información, Universidad de Castilla-La Mancha. Tesis Doctoral, Julio 2011. [RZ01] W. Rounds, G. Q. Zhang. Clausal Logic and Logic Programming in Algebraic Domains. Information and Computation 171:183¿200, 2001. [SB75] E. H. Shortliffe, B. G. Buchanan. A model of inexact reasoning in medicine. Mathematical Biosciences 23:351¿379, 1975. [Sco82] D. S. Scott. Domains for denotational semantics. Lecture Notes in Computer Science 140:577¿610, 1982. 178 BIBLIOGRAPHY [Ses02] M. I. Sessa. Approximate reasoning by similarity-based SLD resolution. Fuzzy Sets and Systems 275:389¿426, 2002. [Sha76] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, 1976. [Sha83] E. Y. Shapiro. Logic programs with uncertainties: A tool for implementing rule-based systems. In Proc. of the 8th International Joint Conference on Artificial Intelligence, IJCAI¿83, Karlsruhe. Pp. 529¿532. 1983. [SM12] U. Straccia, N. Madrid. A top-k query answering procedure for fuzzy logic programming. Fuzzy Sets and Systems 205:1¿29, 2012. [SS83] B. Schweizer, A. Sklar. Probabilistic Metric Spaces. North-Holland, New York, 1983. [Sti88] M. E. Stickel. A Prolog technology theorem prover: Implementation by an extended Prolog compiler. Journal of Automated reasoning 4(4):353¿380, 1988. [Str05a] U. Straccia. Query Answering in Normal Logic Programs Under Uncertainty. In Godó (ed.), Proc. of 8th. European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, ECSQARU¿05, Barcelona. Pp. 687¿700. Lecture Notes in Computer Science 3571, 2005. [Str05b] U. Straccia. Towards a fuzzy description logic for the semantic web (preliminary report). The Semantic Web: Research and Applications, pp. 73¿123, 2005. [Str05c] U. Straccia. Uncertainty Management in Logic Programming: Simple and Effective Top-Down Query Answering. In Khosla et al. (eds.), Proc. 9th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Part II. Pp. 753¿760. Lecture Notes in Computer Science 3682, 2005. [TAT95] E. Trillas, C. Alsina, J. M. Terricabras. Introducción a la lógica borrosa. Ariel, S.A., Barcelona, 1995. [TCC00] E. Trillas, C. del Campo, S. Cubillo. When QM-Operators Are Implication Functions and Conditional Fuzzy Relations. International Journal of Intelligent Systems 15:647¿655, 2000. BIBLIOGRAPHY 179 [TT89] J. M. Terricabras, E. Trillas. Some Remarks on Vague Predicates. Theoria 10:1¿12, 1989. [Tur92] I. B. Turksen. Interval-valued fuzzy sets and ¿compensatory AND¿. Fuzzy Sets Systems 51(3):295¿307, 1992. [TV85] E. Trillas, L. Valverde. On mode and implication in approximate reasoning. In Gupta et al. (eds.), Approximate reasoning in expert systems. North Holland, Elsevier Science Publishers B. V., 1985. [VBG12] A. Vidal, F. Bou, L. Godo. An SMT-Based Solver for Continuous t-norm Based Logics. In Proceedings of the 6th International Conference on Scalable Uncertainty Management. Lecture Notes in Computer Science 7520, pp. 633¿640. 2012. [VGM02] C. Vaucheret, S. Guadarrama, S. Muñoz. Fuzzy Prolog: A Simple General Implementation Using CLP(R). In Baaz and Voronkov (eds.), Proc. of Logic for Programming, Artificial Intelligence and Reasoning, LPAR¿02, Tbilisi. Pp. 450¿463. Lectures Notes in Artificial Intelligence 2514, 2002. [Voj01] P. Vojtáš. Fuzzy Logic Programming. Fuzzy Sets and Systems, Elsevier 124(1):361¿370, 2001. [VP96] P. Vojtáš, L. Paulík. Soundness and completeness of non-classical extended SLD-resolution. In Dyckhoff and al (eds.), Proc. of the Workshop on Extensions of Logic Programming, ELP¿96, Leipzig. Pp. 289¿301. Lecture Notes in Computer Science 1050, 1996. [VZ96] L. Valverde, L. A. Zadeh. Del control analítico al control borroso. Universitat de les Illes Balears, 1996. [War83] D. H. D. Warren. An Abstract Prolog Instruction Set. Technical note 309, SRI International, Menlo Park, 1983. [WTL93] T. J. Weigert, J. J. P. Tsai, X. Liu. Fuzzy Operator Logic and Fuzzy Resolution. Journal of Automated Reasoning 10(1):59¿78, 1993. [Yag88] R. R. Yager. On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18(1):183¿190, 1988. 180 BIBLIOGRAPHY [Yag93a] R. R. Yager. Families of OWA operators. Fuzzy Sets and Systems 59(2):125¿148, 1993. [Yag93b] R. R. Yager. Fuzzy Screening Systems. In Owen and Roubens (eds.), Fuzzy logic: state of the art. Pp. 251¿261. Kluwer Academic Publishers, Dordrecht, 1993. [Yag94a] R. R. Yager. Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems 67(2):129¿145, 1994. [Yag94b] R. R. Yager. On weighted median aggregation. International Journal of Uncertainty 2:101¿113, 1994. [Yin02] M. Ying. Implication operators in fuzzy logic. IEEE Transactions on Fuzzy Systems 10:88¿91, 2002. [Zad65a] L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese 30:407¿428, 1965. [Zad65b] L. A. Zadeh. Fuzzy Sets. Information and Control 8(3):338¿353, 1965. [Zad73] L. A. Zadeh. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics 3(1), 1973. [Zad75] L. A. Zadeh. The concept of a Linguistic Variable and Its Applications to Aproximate Reasoning. Information Sciences, pp. 199¿249, 1975. [Zad96] L. A. Zadeh. Nacimiento y evolución de la lógica borrosa, el soft computing y la computación con palabras: un punto de vista personal. Psicothema 8(2):421¿429, 1996. [Zad08] L. A. Zadeh. Is there a need for fuzzy logic? Information Sciences 178:2751¿2779, 2008. [ZZ80] H. Zimmermann, P. Zysno. Latent Connectives in Human Decision Making. Fuzzy Sets and Systems 4:37¿51, 1980.


Fundación Dialnet

Mi Documat