Ir al contenido

Documat


Resumen de Inference for a General Class of Models for Recurrent Events with application to cancer data

Juan Ramón González Ruiz Árbol académico

  • English

    La necesidad del análisis de supervivencia aparece cuando necesitamos estudiar las propiedades estadísticas de una variable que describe el tiempo hasta que ocurre un evento único. En algunas ocasiones, podemos observar que el evento de interés ocurre repetidamente en un mismo individuo, como puede ser el caso de un paciente diagnosticado de cáncer que recae a lo largo del tiempo o cuando una persona es reingresada repetidas veces en un hospital. En este caso hablamos de análisis de supervivencia con eventos recurrentes. La naturaleza recurrente de los eventos hace necesario el uso de otras técnicas distintas a aquellas que utilizamos cuando analizamos tiempos de supervivencia para un evento único. En esta tesis, tratamos este tipo de análisis principalmente motivados por dos estudios en investigación en cáncer que fueron creados especialmente para este trabajo. Uno de ellos hace referencia a un estudio sobre readmisiones hospitalarias en pacientes diagnosticados con cáncer colorectal, mientras que el otro hace referencia a pacientes diagnosticados con linfomas no Hodgkinianos. Este último estudio es especialmente relevante ya que incluimos información sobre el efecto del tratamiento después de las recaídas y algunos autores han mostrado la necesidad de desarrollar un modelo específico para pacientes que presentan este tipo de enfermedades.

    Nuestra contribución al análisis univariante es proponer un método para construir intervalos de confianza para la mediana de supervivencia en el caso de eventos recurrentes. Para ello, hemos utilizado dos aproximaciones. Una de ellas se basa en las varianzas asintóticas derivadas de dos estimadores existentes de la función de supervivencia, mientras que el otro utiliza técnicas de remuestreo. Esta última aproximación es útil ya que uno de los estimadores utilizados todavía no tiene una forma cerrada para su varianza. La nueva contribución de este trabajo es el estudio de cómo hacer remuestreo en la presencia de datos con eventos recurrentes que aparecen de un esquema conocido como ``sum-quota accrual" y la informatividad del mecanismo de censura por la derecha que presentan este tipo de datos. Demostramos la convergencia d bil y los intervalos de confianza asintóticos se construyen utilizando dicho resultado.

    Por otro lado, el análisis multivariante trata el problema de cómo incorporar más de una covariable en el análisis. En problemas con eventos recurrentes, también necesitamos tener en cuenta que además de las covariables, la hetereogeneidad, el número de ocurrencias, o especialmente, el efecto de las intervenciones después de las reocurrencias puede modificar la probabilidad de observar un nuevo evento en un paciente. Este último punto es muy importante ya que todavía no se ha tenido en cuenta en estudios biomédicos. Para tratar este problema, hemos basado nuestro trabajo en un nuevo modelo para eventos recurrentes propuesto por Peña y Hollander, 2004. Nuestra contribución a este punto es la adaptación de las recaídas en cáncer utilizando este modelo en el que el efecto de las intervenciones se representa mediante un proceso llamado ``edad efectiva' que actúa sobre la función de riesgo basal. Hemos llamado a este modelo modelo dinámico de cáncer (``dynamic cancer model').

    También tratamos el problema de la estimación de parámetros de la clase general de modelos para eventos recurrentes propuesta por Peña y Hollander donde el modelo dinámico de cáncer se puede ver como un caso especial de este modelo general. Hemos desarrollado dos aproximaciones. La primera se basa en inferencia semiparamétrica, donde la función de riesgo basal se especifica de forma no paramétrica y usamos el algoritmo EM. La segunda es una aproximación basada en verosimilitud penalizada donde adoptamos dos estrategias diferentes. Una de ellas se basa en penalizar la verosimilitud parcial donde la penalización recae en los coeficientes de regresión. La segunda penaliza la verosimilitud completa y da una estimación no paramétrica de la función de riesgo basal utilizando un estimador continuo. La solución se aproxima utilizando splines. La principal ventaja de este método es que podemos obtener fácilmente una estimación suave de la función de riesgo así como una estimación de la varianza de la varianza de la fragilidad, mientras que con las otras aproximaciones esto no es posible. Además este último método presenta un coste computacional bastante más bajo que los otros. Los resultados obtenidos con datos reales, indican que la flexibilidad de este modelo es una garantía para analizar datos de pacientes que recaen a lo largo del tiempo y que son intervenidos después de las recaídas tumorales.

    El aspecto computacional es otra de las contribuciones importantes de esta tesis al campo de los eventos recurrentes. Hemos desarrollado tres paquete de R llamados survrec, gcmrec y frailtypack que están accesibles en CRAN, http://www.r-project.org/. Estos paquetes permiten al usuario calcular la mediana de supervivencia y sus intervalos de confianza, estimar los par metros del modelo de Peña y Hollander (en particular el modelo dinámico de cáncer) utilizando el algoritmo EM y la verosimilitud penalizada, respectivamente.

    ---------------------------------

  • English

    Survival analysis arises when we are interested in studying statistical properties of a variable which describes the time to a single event. In some situations, we may observe that the event of interest occurs repeatedly in the same individual, such as when a patient diagnosed with cancer tends to relapse over time or when a person is repeatedly readmitted in a hospital. In this case we speak about survival analysis with recurrent events. Recurrent nature of events makes necessary to use other techniques from those used when we analyze survival times from one single event. In this dissertation we deal with this type of analysis mainly motivatedby two studies on cancer research that were created specially for this research. One of them belongs to a study on hospital readmissions in patients diagnosed with colorectal cancer, while the other one deals with patients diagnosed with non-Hodgkin's lymphoma. This last study is mainly relevant since we include information about the effect of treatment after relapses and some authors have stated the needed of developing a specific model for relapsing patients in cancer settings.

    Our first contribution to univariate analysis is to propose a method to construct confidence intervals for the median survival time in the case of recurrent event settings. Two different approaches are developed. One of them is based on asymptotic variances derived from two existing estimators of survival function, while the other one uses bootstrap techniques. This last approach is useful since one of the estimators used, does not have any closed form for its variance yet. The new contribution to this work is the examination of the question of how to do bootstrapping in the presence of recurrent event data arising from a sum-quota accrual scheme and informativeness of right censoring mechanism. Weak convergence is proved and asymptotic confidence intervals are built to according this result.

    On the other hand, multivariate analysis addresses the problem of how incorporate more than one covariate in the analysis. In recurrent event settings, we also need to take into account that apart from covariates, the heterogeneity, the number of occurrences or specially, the effect of interventions after re occurrences may modify the probability of observing a new event in a patient. This last point is a very important one since it has not been taken into consideration in biomedical studies yet. To address this problem, we base our work on a new model for recurrent events proposed by Peña and Hollander. Our contribution to this topic is to accommodate the situation of cancer relapses to this model model in which the effect of interventions is represented by an effective age process acting on the baseline hazard function. We call this model dynamic cancer model.

    We also address the problem of estimating parameters of the general class of models for recurrent events proposed by Peña and Hollander, 2004, where the dynamic cancer model may be seen as a special case of this general model. Two general approaches are developed. First approach is based on semiparametric inference, where a baseline hazard function is nonparametrically specified and uses the EM algorithm. The second one is a penalized likelihood approach where two different strategies are adopted. One of them is based on penalizing the partial likelihood where the penalization bears on a regression coefficient. The second penalized approach penalized full likelihood, and it gives a non parametric estimation of the baseline hazard function using a continuous estimator. The solution is then approximated using splines. The main advantage of this method is that we caneasily obtain smooth estimates of the hazard function and an estimation of the variance of frailty variance, while in the other approaches this is not possible. In addition, this last approach has a quite less computational cost than the other ones. The results obtained using dynamic cancer model in real data sets, indicate that the flexibility of this method provides a safeguard for analyzing data where patients relapse over time and interventions are performed after tumoral reoccurrences.

    Computational issue is another important contribution of this work to recurrent event settings. We have developed three R packages called survrec, gcmrec, and frailtypack that are available at CRAN, http://www.r-project.org/. These packages allow users to compute median survival time and their confidence intervals, to estimate the parameters involved in the Peña and Hollander's model (in particular in the dynamic cancer model) using EM algorithm, and to estimate this parameters using penalized approach, respectively.


Fundación Dialnet

Mi Documat