Ir al contenido

Documat


Diseño de sistemas neurocomputacionales en el ámbito de la Biomedicina

  • Autores: Daniel Urda Muñoz Árbol académico
  • Directores de la Tesis: José Manuel Jerez Aragonés (dir. tes.) Árbol académico, Leonardo Franco (dir. tes.) Árbol académico
  • Lectura: En la Universidad de Málaga ( España ) en 2014
  • Idioma: español
  • Número de páginas: 162
  • Tribunal Calificador de la Tesis: Paulo Jorge Gomes Lisboa (presid.) Árbol académico, Miguel Atencia (secret.) Árbol académico, Francisco Javier Veredas Navarro (voc.) Árbol académico, Ignacio José Turias Domínguez (voc.) Árbol académico, Alfredo Vellido Alacena (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: RIUMA
  • Resumen
    • español

      El área de la biomedicina es un área extensa en el que las entidades públicas de cada país han invertido y continúan invirtiendo en investigación una gran cantidad de financiación a través de proyectos nacionales, europeos e internacionales. Los avances científicos y tecnológicos registrados en los últimos quince años han permitido profundizar en las bases genéticas y moleculares de enfermedades como el cáncer, y analizar la variabilidad de respuesta de pacientes individuales a diferentes tratamientos oncológicos, estableciendo las bases de lo que hoy se conoce como medicina personalizada. Ésta puede definirse como el diseño y aplicación de estrategias de prevención, diagnóstico y tratamiento adaptadas a un escenario que integra la información del perfil genético, clínico, histopatológico e inmuhistoquímico de cada paciente y patología. Dada la incidencia de la enfermedad de cáncer en la sociedad, y a pesar de que la investigación se ha centrado tradicionalmente en el aspecto de diagnóstico, es relativamente reciente el interés de los investigadores por el estudio del pronóstico de la enfermedad, aspecto integrado en la tendencia creciente de los sistemas nacionales de salud pública hacia un modelo de medicina personalizada y predictiva. El pronóstico puede ser definido como conocimiento previo de un evento antes de su posible aparición, y puede enfocarse a la susceptibilidad, supervivencia y recidiva de la enfermedad. En la literatura, existen trabajos que utilizan modelos neurocomputacionales para la predicción de casuísticas muy particulares como, por ejemplo, la recidiva en cáncer de mama operable, basándose en factores pronóstico de naturaleza clínico-histopatológica. En ellos se demuestra que estos modelos superan en rendimiento a las herramientas estadísticas tradicionalmente utilizadas en análisis de supervivencia por el personal clínico experto. Sin embargo, estos modelos pierden eficacia cuando procesan información de tumores atípicos o subtipos morfológicamente indistinguibles, para los que los factores clínicos e histopatológicos no proporcionan suficiente información discriminatoria. El motivo es la heterogeneidad del cáncer como enfermedad, para la que no existe una causa individual caracterizada, y cuya evolución se ha demostrado que está determinada por factores no sólo clínicos sino también genéticos. Por ello, la integración de los datos clínico-histopatológicos y proteómico-genómica proporcionan una mayor precisión en la predicción en comparación con aquellos modelos que utilizan sólo un tipo de datos, permitiendo llevar a la práctica clínica diaria una medicina personalizada. En este sentido, los datos de perfiles de expresión provenientes de experimentos con plataformas de microarrays de ADN, los datos de microarrays de miRNA, o más recientemente secuenciadores de última generación como RNA-Seq, proporcionan el nivel de detalle y complejidad necesarios para clasificar tumores atípicos estableciendo diferentes pronósticos para pacientes dentro de un mismo grupo protocolizado. El análisis de datos de esta naturaleza representa un verdadero reto para clínicos, biólogos y el resto de la comunidad científica en general dado el gran volumen de información producido por estas plataformas. Por lo general, las muestras resultantes de los experimentos en estas plataformas vienen representadas por un número muy elevado de genes, del orden de miles de ellos. La identificación de los genes más significativos que incorporen suficiente información discriminatoria y que permita el diseño de modelos predictivos sería prácticamente imposible de llevar a cabo sin ayuda de la informática. Es aquí donde surge la Bioinformática, término que hace referencia a cómo se aplica la ciencia de la información en el área de la biomedicina. El objetivo global que se intenta alcanzar en esta tesis consiste, por tanto, en llevar a la práctica clínica diaria una medicina personalizada. Para ello, se utilizarán datos de perfiles de expresión de alguna de las plataformas de microarrays más relevantes con objeto de desarrollar modelos predictivos que permitan obtener una mejora en la capacidad de generalización de los sistemas pronóstico actuales en el ámbito clínico. Del objetivo global de la tesis pueden derivarse tres objetivos parciales: el primero buscará (i) pre-procesar cualquier conjunto de datos en general y, datos de carácter biomédico en particular, para un posterior análisis; el segundo buscará (ii) analizar las principales deficiencias existentes en los sistemas de información actuales de un servicio de oncología para así desarrollar un sistema de información oncológico que cubra todas sus necesidades; y el tercero buscará (iii) desarrollar nuevos modelos predictivos basados en perfiles de expresión obtenidos a partir de alguna plataforma de secuenciación, haciendo hincapié en la capacidad predictiva de estos modelos, la robustez y la relevancia biológica de las firmas genéticas encontradas. Finalmente, se puede concluir que los resultados obtenidos en esta tesis doctoral permitirían ofrecer, en un futuro cercano, una medicina personalizada en la práctica clínica diaria. Los modelos predictivos basados en datos de perfiles de expresión que se han desarrollado en la tesis podrían integrarse en el propio sistema de información oncológico implantado en el Hospital Universitario Virgen de la Victoria (HUVV) de Málaga, fruto de parte del trabajo realizado en esta tesis. Además, se podría incorporar la información proteómico-genómica de cada paciente para poder aprovechar al máximo las ventajas añadidas mencionadas a lo largo de esta tesis. Por otro lado, gracias a todo el trabajo realizado en esta tesis, el doctorando ha podido profundizar y adquirir una extensa formación investigadora en un área tan amplia como es la Bioinformática.

    • English

      Inteligencia artificial ; Sistemas de control médico


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno