Ir al contenido

Documat


Resumen de On the quasiperiodic hamiltonian andronov-hopf bifurcation

Juan Ramón Pacha Andújar

  • English

    Aquest treball es situa dintre del marc dels sistemes dinàmics hamiltonians de tres graus de llibertat. Allà considerem famílies d'òrbites periòdiques amb una transició estable-complex inestable: sigui L el paràmetre que descriu la família i suposarem que per a valors del paràmetre més petits que un cert valor crític, L', els multiplicadors característics de les òrbites periòdiques corresponents hi són sobre el cercle unitat, quan L=L' aquests col·lisionen per parelles conjugades (òrbita ressonant o crítica) i per L > L', abandonen el cercle unitat cap al pla complex (col·lisió de Krein amb signatura oposada). El canvi d'estabilitat subseqüent es descriu a la literatura com "transició estable a complex inestable". Tanmateix, a partir d'estudis numèrics sobre certes aplicacions simplèctiques (n'esmentarem D. Pfenniger, Astron. Astrophys. 150, 97-111, 1985), és coneguda l'aparició (sota condicions d'incommensurabilitat) de fenòmens de bifurcació quasi-periòdica, en particular, el desplegament de famílies de tors 2-dimensionals. A més aquesta bifurcació s'assembla a la (clàssica) bifurcació d'Andronov-Hopf, en el sentit de què hi sorgeixen objectes linealment estables (tors-2D el·líptics) "al voltant" d'objectes inestables de dimensionalitat més baixa (òrbites periòdiques), i recíprocament, n'apareixen tors inestables (hiperbòlics) "al voltant" d'òrbites periòdiques linealment estables.

    Nostre objectiu és entendre la dinàmica local en un entorn de l'òrbita periòdica ressonant per tal de provar, analíticament, l'existència dels tors invariants bifurcats segons l'esquema descrit dalt. Això el portem a terme mitjançant l'anàlisi següent:

    (i) Primer de tot obtenim d'una manera constructiva (això és, donant algorismes) una forma normal ressonant en un entorn de l'òrbita periòdica crítica. Aquesta forma normal la portem fins a qualsevol ordre arbitrari r. Així doncs, mostrem que el hamiltonià inicial es pot posar com la suma de la forma normal (integrable) més una resta no integrable. A partir d'aquí, podem estudiar la dinàmica de la forma normal, prescindint dels altres termes i, amb aquest tractament (formal) del problema, som capaços d'identificar els paràmetres que governen tant l'existència de la bifurcació com la seva tipologia (directa, inversa). Cal, remarcar que el que es fa fins aquí, no és només un procés qualitatiu, ja que a més ens permet derivar parametritzacions molt acurades dels tors no pertorbats.

    (ii) A continuació, calculem acotacions "òptimes" per a la resta. D'aquesta manera, esperem provar que un bon nombre de tors (en sentit de la mesura) es preserven quan s'afegeix la pertorbació.

    (iii) Finalment, apliquem mètodes KAM per establir que la majoria (veure comentari dalt) dels tors bifurcats sobreviuen. Aquests mètodes es basen en la construcció d'un esquema de convergència quadràtica capaç de contrarestar l'efecte dels petits divisors que apareixen quan s'aplica teoria de pertorbacions per trobar solucions quasi-periòdiques. En el nostre cas, a més, resulta que alguna de les condicions "típiques" que s'imposen sobre les freqüències (intrínseques i normals) dels tors no pertorbats, no estan ben definides per als tors bifurcats, de manera que ens ha calgut desenvolupar un tractament més específic.

    keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory.

    Classificació AMS: 37J20, 37J25, 37J40 ----------------------------------------------------------------------------------------------------------------------

  • English

    This work is placed into the context of the three-degree of freedom Hamiltonian systems, where we consider families of periodic orbits undergoing transitions stable-complex unstable. More precisely: Let L be the parameter of the family and assuming that, for values of L smaller than some critical value say, L', the characteristic multipliers of the periodic orbits lie on the unit circle, when L=L' they colllide pairwise (critical or resonant periodic orbit) and, for L > L' leave the unit circle towards the complex plane (Krein collision with opposite signature).

    From numerical studies on some concrete symplectic maps (for instance, D. Pfennniger, Astron. Astrophys. 150, 97-111, 1985) it is known the rising (under certain irrationality conditions), of quasi-periodic bifurcation phenomena, in particular, the appearance of unfolded 2D invariant tori families. Moreover, the bifurcation takes place in a way that resembles the classical Andronov-Hopf one, in the sense that either stable invariant objects (elliptic tori) unfold "around" linear unstable periodic orbits, or conversely, unstable invariant structures (hyperbolic tori) appear "surrounding" stable periodic orbits.

    Our objective is, thus, to understand the (local) dynamics in a neighbourhood of the critical periodic orbit well enough to prove analytically, the existence of such quasi-periodic solutions together with the bifurcation pattern described above. This is carried out through three steps:

    (i) First, we derive, in a constructive way (i. e., giving algorithms), a resonant normal form around the critical periodic orbit up to any arbitrary order r. Whence, we show that the initial raw Hamiltonian can be casted --through a symplectic change--, into an integrable part, the normal form itself, plus a (non-integrable) remainder. From here, one can study the dynamics of the normal form, skipping the remainder off. As a result of this (formal) approach, we are able to indentify the parameters governing both, the presence of the bifurcation and its type (direct, inverse). We remark that this is not a merely qualitative process for, in addition, accurate parametrizations of the bifurcated families of invariant tori are derived in this way.

    (ii) Beyond the formal approach, we compute "optimal" bounds for the remainder of the normal form, so one expects to prove the preservation of a higher (in the measure sense) number of invariant tori --than, indeed, with a less sharp estimates--.

    (iii) Finally, we apply KAM methods to establish the persistence of (most, in the measure sense) of the bifurcated invariant tori. These methods involve the design of a suitable quadratic convergent scheme, able to overcome the effect of the small divisors appearing in perturbation techniques when one looks for quasi-periodic solutions. In this case though, some of the "typical" conditions that one imposes on the frequencies (intrinsic and normal) of the unperturbed invariant tori do not work, due to the proximity to parabolic tori, so one is bound to sketch specific tricks.

    keywords: Bifurcation problems, perturbations, normal forms, small divisors, KAM theory AMS classification: 37J20, 37J25, 37J40


Fundación Dialnet

Mi Documat