Ir al contenido

Documat


Resumen de Growth in Groups of Non-positive Curvature

Xabier Legaspi Juanatey

  • español

    Esta tesis se centra en preguntas que comparan números fáciles de definir pero no fáciles de calcular. La acción de un grupo G sobre un espacio métrico X se dice propia si para cada r > 0, y para cada x ∈ X, el número de elementos u ∈ G que mueven x a distancia a lo sumo r es finito. Sea G un grupo actuando mediante isometrías y propiamente sobre un espacio métrico X. La tasa de crecimiento exponencial relativa de la acción de un subconjunto U ⊂ G sobre X es el número.. ω(U,X) = lim supr→∞1rlog |{ u ∈ U : |ux − x| ⩽ r }|, cuyo valor es independiente del punto x ∈ X. Si G es el grupo fundamental de una variedad hiperbólica cerrada M que actúa sobre el espacio recubridor universal X, entonces ω(G,X)tiene numerosas interpretaciones. Coincide con la entropía de volumen de la variedad M,[71, 62]; el exponente crítico de la serie de Poincaré de G, [67, 75]; la entropía topológica del flujo geodésico en el fibrado tangente unitario de M, [60]; la dimensión de Hausdorff del conjunto límite radial de G, [28], etc. En este contexto, el número ω(G,X) es la piedra angular que une grupos, geometría y dinámica. La discreción de la órbita de G y la curvatura negativa de M juegan un papel determinante en este fenómeno...

  • English

    The aim of this thesis is to obtain a better understanding of the behavior of exponential growth rates within the class of groups that act acylindrically in a hyperbolic space in the sense of Gromov. To do this, we will address two problems of a different nature.

    In the first problem we will study the exponential growth rates of quasi-convex subgroups. We will compare these rates with that of the ambient group and we will determine when it is possible to obtain strict equality/inequality. To do so, we will exploit proper actions on metric spaces that, a priori, are not hyperbolic, but that have isometries that behave like the loxodromic isometries of a hyperbolic space.

    The second problem revolves around uniform uniform exponential growth. We will prove that this property is preserved if we take small cancellation quotients of groups that act acylindrically on a hyperbolic space. As a corollary, we will obtain that there is a universal lower bound on the uniform exponential growth rate for the family of classical small cancellation quotients. This bound depends only on one of the two acylindricity parameters.

  • français

    Cette thèse est centré au tour des questions qui comparent des nombres faciles à définir mais pas faciles à calculer. L'action d'un groupe G sur un espace métrique X est propresi pour tout r > 0, et pour tout x ∈ X, le nombre d'éléments u ∈ G qui déplacent x àdistance au plus r est fini. Soit G un groupe agissant par isométries et proprement sur une space métrique X. Le taux de croissance exponentiel relatif de l'action d'un sous-ensemble U ⊂ G sur X est le nombreω(U,X) = lim supr→∞1rlog |{ u ∈ U : |ux − x| ⩽ r }|,dont la valeur est indépendante du point x ∈ X. Si G est le groupe fondamental d'une variété hyperbolique fermée M agissant sur le revêtement universel X, alors ω(G,X) a de nombreuses interprétations. Elle correspond à l'entropie de volume de la variété M,[71, 62] ; l'exposant critique de la série de Poincaré de G, [67, 75] ; l'entropie topologique du flot géodésique dans le fibré unitaire tangent de M, [60] ; la dimension Hausdorff de l'ensemble radial limite de G, [28], etc. Dans ce contexte, le nombre ω(G,X) est la pierre angulaire qui unit les groupes, la géométrie et la dynamique. L'orbite discrète de G et la courbure négative de M jouent un rôle déterminant dans ce phénomène...


Fundación Dialnet

Mi Documat