Ir al contenido

Documat


Resumen de Contributions to the pricing of financial derivatives contracts in commoditiy markets and the use of quantum computing in finance

Alberto Pedro Manzano Herrero

  • español

    Esta tesis está divida en tres partes, las cuales abordan temas distintos dentro del área de las finanzas cuantitativas. En la primera parte, se presentan dos enfoques para modelar contratos derivados sobre un índice de materias primas. Un enfoque microscopico en el que modelamos los componentes del índice y derivamos el precio del índice a partir de su combinación y un enfoque macroscópico en el que modelamos directamente el índice. En la tesis se calibran y validan ambos modelos, discutiendo sus fortalezas y debilidades. En la segunda parte, se presenta una alternativa al Monte Carlo acelerado cuánticamente tradicional y la aplicamos al cálculo de precios de derivaod financieros. Dicha alternativa combina una nueva técnica de estimación de amplitud con un nuevo enfoque en la codificación del problema en un ordenador cuántico. En la tesis, se evalúa experimentalmente la propuesta frente a la alternativa tradicional. En la tercera parte, se introduce el aprendizaje automático differencial en el contexto de la computación cuántica y se adapata para recuperar la forma de una distribución (financiera) a partir de muestras. Para este propósito, se discuten las capacidades de aproximación de los circuitos cuánticos paramétricos, se obtienen nuevas cotas sobre los errores de generalización al usar el aprendizaje máquina diferencial y se adapta este último para trabajar a partir de muestras de una distribución. Por último, se realizan experimentos combinando estas tres ideas para resaltar su enorme potencial

  • galego

    Esta tese divídese en tres partes, que abordan diferentes temas dentro da área de finanzas cuantitativas. Na primeira parte, preséntanse dous enfoques para modelar contratos derivados sobre un índice de mercadorías. Un enfoque microscópico no que modelamos os compoñentes do índice e derivamos o prezo do índice a partir da súa combinación e un enfoque macroscópico no que modelamos directamente o índice. Na tese ambos modelos están calibrados e validados, discutindo os seus puntos fortes e débiles. Na segunda parte, preséntase unha alternativa ao tradicional Monte Carlo acelerado cuántico e aplicámola ao cálculo dos prezos dos derivados financeiros. Esta alternativa combina unha nova técnica de estimación de amplitude cun novo enfoque para codificar o problema nunha computadora cuántica. Na tese avalíase experimentalmente a proposta fronte á alternativa tradicional. Na terceira parte, introdúcese a aprendizaxe automática diferencial no contexto da computación cuántica e adáptase para recuperar a forma dunha distribución (financeira) a partir de mostras. Para este fin, explícanse as capacidades de aproximación dos circuítos cuánticos paramétricos, obtéñense novas cotas sobre os erros de xeneralización ao utilizar a aprendizaxe automática diferencial e este último adáptase para traballar a partir de mostras dunha distribución. Por último, realízanse experimentos combinando estas tres ideas para destacar o seu enorme potencial.

  • English

    This thesis is divided into three parts, each of which addresses different topics within the field of quantitative finance. In the first part, we present two approaches to modeling derivative contracts on a commodity index. On the one hand, a microscopic approach where we model the components of the index and derive the index price from their combination. On the other hand, a macroscopic approach where we directly model the index. In the thesis, we calibrate and test both models, discussing their strengths and weaknesses. In the second part, we introduce an alternative to traditional quantum-accelerated Monte Carlo methods and apply it to derivative pricing. This alternative combines a new amplitude estimation technique with a novel approach to encoding the problem on a quantum computer. In the thesis, we experimentally evaluate our proposal against the traditional alternative. In the third part, we introduce differential machine learning in the context of quantum computing and adjust it to recover the shape of a (financial) distribution from samples. For this purpose, we discuss the approximation capabilities of parametric quantum circuits, obtain new results on generalization error when differential machine learning is being used, and adjust the latter to work with samples of a distribution. Finally, we conduct experiments combining these three ideas to highlight their enormous potential.


Fundación Dialnet

Mi Documat