Ir al contenido

Documat


From Compression of Wearable-based Data to Effortless Indoor Positoning

  • Autores: Lucie Klus
  • Directores de la Tesis: Carlos Granell Canut (dir. tes.) Árbol académico
  • Lectura: En la Universitat Jaume I ( España ) en 2023
  • Idioma: inglés
  • Número de páginas: 212
  • Tribunal Calificador de la Tesis: Christos Laoudias (presid.) Árbol académico, Joaquín Torres Sospedra (secret.) Árbol académico, Tobias Feigl (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: TDX
  • Resumen
    • The dissertation focuses on boosting the energy efficiency of IoT and wearable devices by implementing lossy compression techniques onto sensor-based time-series data and into indoor localization paradigms. The thesis deals with lossy compression mechanisms that can be implemented for energy-efficient, delay-sensitive wearable data gathering, transfer, and storage. The novel DLTC compression method ensures optimal compression ratio and reconstruction error trade-off, with minimum complexity and delay. In the scope of indoor positioning, the proposed bit-level, feature-wise, and sample-wise reduction of the radio map support accurate positioning while saving resources in data storage and transfer. The work implements a multi-dimensional compression of the radio map to boost the performance efficiency of the positioning system and proposes a cascade model to compensate for k-NN's drawback of computationally expensive prediction on voluminous datasets.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno