Ir al contenido

Documat


Study of the gromov hyperbolicity constant on graphs

  • Autores: Charo Reyes
  • Directores de la Tesis: José María Sigarreta Almira (dir. tes.) Árbol académico, José Manuel Rodríguez García (codir. tes.) Árbol académico
  • Lectura: En la Universidad Carlos III de Madrid ( España ) en 2022
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Domingo Pestana Galván (presid.) Árbol académico, Ana María Portilla Ferreira (secret.) Árbol académico, Eva Tourís (voc.) Árbol académico
  • Enlaces
  • Resumen
    • The concept of Gromov hyperbolicity grasps the essence of negatively curved spaces like the classical hyperbolic space and Riemannian manifolds of negative sectional curvature. It is remarkable that a simple concept leads to such a rich general theory. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of any geodesic metric space is equivalent to the hyperbolicity of a graph related to it.

      In this Ph. D. Thesis we characterize the hyperbolicity constant of interval graphs and circular-arc graphs. Likewise, we provide relationships between dominant sets and the hyperbolicity constant. Finally, we study the invariance of the hyperbolicity constant when the graphs are transformed by several operators.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno