Ir al contenido

Documat


Resumen de Enriching information extraction pipelines in clinical decision support systems

João Rafael Duarte de Almeida

  • español

    Los estudios sanitarios de múltiples centros son importantes para aumentar la repercusión de los resultados de la investigación médica debido al número de sujetos que pueden participar en ellos. Para simplificar la ejecución de estos estudios, el proceso de intercambio de datos debería ser sencillo, por ejemplo, mediante el uso de bases de datos interoperables. Sin embargo, la consecución de esta interoperabilidad sigue siendo un tema de investigación en curso, sobre todo debido a los problemas de gobernanza y privacidad de los datos. En la primera fase de este trabajo, proponemos varias metodologías para optimizar los procesos de estandarización de las bases de datos sanitarias. Este trabajo se centró en la estandarización de fuentes de datos heterogéneas en un esquema de datos estándar, concretamente el OMOP CDM, que ha sido desarrollado y promovido por la comunidad OHDSI. Validamos nuestra propuesta utilizando conjuntos de datos de pacientes con enfermedad de Alzheimer procedentes de distintas instituciones. En la siguiente etapa, con el objetivo de enriquecer la información almacenada en las bases de datos de OMOP CDM, hemos investigado soluciones para extraer conceptos clínicos de narrativas no estructuradas, utilizando técnicas de recuperación de información y de procesamiento del lenguaje natural. La validación se realizó a través de conjuntos de datos proporcionados en desafíos científicos, concretamente en el National NLP Clinical Challenges (n2c2). En la etapa final, nos propusimos simplificar la ejecución de protocolos de estudios provenientes de múltiples centros, proponiendo soluciones novedosas para perfilar, publicar y facilitar el descubrimiento de bases de datos. Algunas de las soluciones desarrolladas se están utilizando actualmente en tres proyectos europeos destinados a crear redes federadas de bases de datos de salud en toda Europa.

  • English

    Multicentre health studies are important to increase the impact of medical research findings due to the number of subjects that they are able to engage. To simplify the execution of these studies, the data-sharing process should be effortless, for instance, through the use of interoperable databases. However, achieving this interoperability is still an ongoing research topic, namely due to data governance and privacy issues. In the first stage of this work, we propose several methodologies to optimise the harmonisation pipelines of health databases. This work was focused on harmonising heterogeneous data sources into a standard data schema, namely the OMOP CDM which has been developed and promoted by the OHDSI community. We validated our proposal using data sets of Alzheimer’s disease patients from distinct institutions. In the following stage, aiming to enrich the information stored in OMOP CDM databases, we have investigated solutions to extract clinical concepts from unstructured narratives, using information retrieval and natural language processing techniques. The validation was performed through datasets provided in scientific challenges, namely in the National NLP Clinical Challenges (n2c2). In the final stage, we aimed to simplify the protocol execution of multicentre studies, by proposing novel solutions for profiling, publishing and facilitating the discovery of databases. Some of the developed solutions are currently being used in three European projects aiming to create federated networks of health databases across Europe.

  • galego

    Os estudos sanitarios de múltiples centros son importantes para aumentar a repercusión dos resultados da investigación médica debido ao número de suxeitos que poden participar neles. Para simplificar a execución destes estudos, o proceso de intercambio de datos debería ser sinxelo, por exemplo, mediante o uso de bases de datos interoperables. Con todo, a consecución desta interoperabilidade segue sendo un tema de investigación en curso, sobre todo debido aos problemas de gobernanza e privacidade dos datos. Na primeira fase deste traballo, propoñemos varias metodoloxías para optimizar os procesos de estandarización das bases de datos sanitarias. Este traballo centrouse na estandarización de fontes de datos heteroxéneas nun esquema de datos estándar, concretamente o OMOP CDM, que foi desenvolvido e promovido pola comunidade OHDSI. Validamos a nosa proposta utilizando conxuntos de datos de pacientes con enfermidade de Alzheimer procedentes de distintas institucións. Na seguinte etapa, co obxectivo de enriquecer a información almacenada nas bases de datos de OMOP CDM, investigamos solucións para extraer conceptos clínicos de narrativas non estruturadas, utilizando técnicas de recuperación de información e de procesamento da linguaxe natural. A validación realizouse a través de conxuntos de datos proporcionados en desafíos científicos, concretamente no National NLP Clinical Challenges(n2c2). Na etapa final, propuxémonos simplificar a execución de protocolos de estudos provenientes de múltiples centros, propoñendo solucións novas para perfilar, publicar e facilitar o descubrimento de bases de datos. Algunhas das solucións desenvolvidas están a utilizarse actualmente en tres proxectos europeos destinados a crear redes federadas de bases de datos de saúde en toda Europa.


Fundación Dialnet

Mi Documat