Ir al contenido

Documat


Resumen de Multi-omic data integration study of immune system alterations in the development of minimal hepatic encephalopathy in patients with liver cirrhosis

María Teresa Rubio Martínez Abarca

  • The main objective of this work was to understand the immunological alterations associated with the peripheral inflammation that trigger minimal hepatic encephalopathy (MHE) in patients with cirrhosis. These changes can be monitored through the signaling cascades of different immune system cell types. In this work, in a preliminary study, changes in gene expression (transcriptomics), plasma metabolites (metabolomics), and a panel of extracellular cytokines were analyzed in blood samples from patients with cirrhosis with and without MHE. Transcriptomics analysis supported the hypothesis that alternations in the Th1/Th2 and Th17 lymphocyte cell populations are the major drivers of MHE. Cluster analysis of serum molecules highlighted 6 groups of chemically similar compounds. We also developed a multi-omic integration analysis pipeline to detect covariation between intra- and extracellular components that could contribute to the induction of cognitive impairment. Results of this integrative analysis suggested a relationship between cytokines CCL20, CX3CL1, CXCL13, IL-15, IL-22, and IL-6 and altered chemotaxis, as well as a link between long-chain unsaturated phospholipids and increased fatty acid transport and prostaglandin production.

    A shift in peripheral inflammation in patients with MHE, mainly orchestrated by CD4+ T cells, had been proposed in previous studies as a critical factor that triggers cognitive impairment. The second part of this thesis focused on understanding the pathways and mechanisms by which alterations in CD4+ lymphocytes may contribute to peripheral inflammation in MHE. Thus, the expression levels of genes, transcription factors, and miRNAs were analyzed in this lymphocyte subtype by high throughput sequencing (RNA-seq and miRNA-seq). Separate analysis of each dataset showed mRNA and miRNA expression differences and altered biological pathways in CD4+ lymphocytes when compared to patients with cirrhosis with and without MHE. We found alterations in 167 mRNAs and 20 pathways in patients with MHE, including toll-like receptors, IL-17 signaling, histidine, and tryptophan metabolism pathways. In addition, 13 miRNAs and 7 transcription factors presented alterations in patients with MHE. We used public databases to determine the target genes of these regulatory molecules and found that increased miR-494-39, miR-656-3p, and miR-130b-3p expression may modulate TNFAIP3 (A20) and ZFP36 (TTP) to increase levels of pro-inflammatory cytokines such as IL-17 and TNF¿.

    Finally, we present a case study of the T-cell receptor (TCR) repertoire profiles of control patients and patients with cirrhosis with and without MHE obtained from the bulk RNA-seq dataset previously generated from isolated CD4+ T cells. Given that RNA-seq experiments contain the TCR genes in a fraction of the data, the receptor repertoire analysis without the need to generate additional data is possible. After read alignment to the VDJ genes was performed with the MiXCR tool, we successfully recovered 498-1,114 distinct TCR beta chains per patient. Results showed fewer public clones (clonal convergence), higher diversity (clonal expansion), and elevated sequence architecture similarity within repertoires, independently of the immune status of the 3 groups of patients. Additionally, we detected significant overrepresentation of celiac disease and inflammatory bowel disease related TCRs in MHE patient repertoires. To the best of our knowledge, this is one of the few studies to have shown a step-by-step pipeline for the analysis of immune repertoires using whole transcriptome RNA-seq reads as source data.

    In conclusion, our work identified potentially relevant molecular mechanisms of the changes in the immune system associated with the onset of MHE in patients with cirrhosis. Future work with a large sample cohort will be required to validate these results in terms of biomarker determination and the development of new, more effective treatments for MHE.


Fundación Dialnet

Mi Documat