Ir al contenido

Documat


Advances in statistical inference for econometric diffusion models

  • Autores: Alejandra María López Pérez
  • Directores de la Tesis: Wenceslao González Manteiga (dir. tes.) Árbol académico, Manuel Febrero Bande (dir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2022
  • Idioma: español
  • Tribunal Calificador de la Tesis: Eva Ferreira García (presid.) Árbol académico, Juan Carlos Reboredo Nogueira (secret.) Árbol académico, Nuno Miguel Baptista Brites (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: MINERVA
  • Resumen
    • Due to their analytical tractability, continuous-time models have become a centerpiece in the financial literature. The goal of this thesis is the development of new goodness-of-fit test for continuous-time diffusion models, considering stochastic differential equations with deterministic and stochastic volatility and Itô diffusions as functional time series. Notwithstanding the importance of goodness-of-fit tools, latent factors and a continuous-time setting with observations occurring at discrete time points challenge the estimation of the models. Therefore, the estimation problem is addressed, as it hinders the goodness-of-fit procedures, discussing the intricacies of different estimation implementations prior to the methodological contribution of the test procedures.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno