Ir al contenido

Documat


Restricted lie (super)algebras, central extensions of non-associative algebras and some tapas

  • Autores: María Pilar Páez Guillán
  • Directores de la Tesis: Manuel Ladra González (dir. tes.) Árbol académico, Ivan Kaygorodov (codir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2021
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Consuelo Martínez López (presid.) Árbol académico, Alberto Carlos Elduque Palomo (secret.) Árbol académico, David A. Towers (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: MINERVA
  • Resumen
    • The general framework of this dissertation is the theory of non-associative algebras. We tackle diverse problems regarding restricted Lie algebras and superalgebras, central extensions of different classes of algebras and crossed modules of Lie superalgebras. Namely, we study the relationships between the structural properties of a restricted Lie algebra and those of its lattice of restricted subalgebras; we define a non-abelian tensor product for restricted Lie superalgebras and for graded ideal crossed submodules of a crossed module of Lie superalgebras, and explore their properties from structural, categorical and homological points of view; we employ central extensions to classify nilpotent bicommutative algebras; and we compute central extensions of the associative null-filiform algebras and of axial algebras. Also, we include a final chapter devoted to compare the two main methods (Rabinowitsch's trick and saturation) to introduce negative conditions in the standard procedures of the theory of automated proving and discovery.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno