Yanet Sánchez López
El Grupo de Investigación de Interfaces Avanzadas (AffectiveLab), es un grupo reconocido por el Gobierno de Aragón (T60-20R) cuya actividad se enmarca en el área de la Interacción Humano-Computadora (IHC). Su actividad investigadora se ha centrado, en los últimos años, en cuatro temas principales: interacción natural, informática afectiva, accesibilidad e interfaces basadas en agentes inteligentes, siendo esta última en la que se enmarca esta tesis doctoral. Más concretamente, la realización de esta tesis doctoral se enmarca dentro de los proyectos de investigación nacionales JUGUEMOS (TIN2015-67149-C3-1R) y PERGAMEX (RTI2018-096986-B-C31). Una de sus líneas de investigación se centra en el desarrollo de arquitecturas cognitivo-afectivas para apoyar el modelado afectivo de los agentes inteligentes. El AffectiveLab tiene una sólida experiencia en el uso de agentes de interfaz incorporados que exhiben expresiones afectivas corporales y faciales (Baldassarri et al., 2008). En los últimos años, se han centrado en el modelado del comportamiento de los agentes inteligentes (Pérez et al., 2017).
La definición de agente inteligente es un tema controvertido, pero se puede decir que es una entidad autónoma que recibe información dinámica del entorno a través de sensores y actúa sobre el medio ambiente a través de actuadores, mostrando un comportamiento dirigido a un objetivo (Russell et al., 2003). El modelado de los procesos cognitivos en los agentes inteligentes se basa en diferentes teorías (Moore, 1980; Newell, 1994; Bratman, 1987) que explican, desde diferentes puntos de vista, el funcionamiento de la mente humana. Los agentes inteligentes implementados sobre la base de una teoría cognitiva se conocen como agentes cognitivos. Los más desarrollados son los que se basan en arquitecturas cognitivas, como Soar (Laird et al., 1987), ACT-R (Anderson, 1993) y BDI (Rao and Georgeff, 1995). Comparado con Soar y otras arquitecturas complejas, BDI se destaca por su simplicidad y versatilidad. BDI ofrece varias características que la hacen popular, como su capacidad para explicar el comportamiento del agente en cada momento, haciendo posible una interacción dinámica con el entorno. Debido a la creciente popularidad del marco BDI se ha utilizado para apoyar el modelado de agentes inteligentes (Larsen, 2019; (Cranefield and Dignum, 2019). En los últimos años, también han aparecido propuestas de BDI que integran aspectos afectivos. Los agentes inteligentes construidos en base a la arquitectura BDI que también incorporan capacidades afectivas, se conocen como agentes EBDI (Emotional BDI) y son el foco de esta tesis.
El objetivo principal de esta tesis ha sido proponer un marco cognitivo-afectivo basado en el BDI que sustente el modelado cognitivo-afectivo de los agentes inteligentes. La finalidad es ser capaz de reproducir un comportamiento humano creíble en situaciones complejas donde el comportamiento humano es variado y bastante impredecible. El objetivo propuesto se ha logrado con éxito en los términos descritos a continuación: • Se ha elaborado un exhaustivo estado del arte relacionado con los modelos afectivos más utilizados para modelar los aspectos afectivos en los agentes inteligentes.
• Se han estudiado las arquitecturas de BDI y las propuestas previas de EBDI. El estudio, que dio lugar a una publicación (Sánchez-López and Cerezo, 2019), permitió detectar las cuestiones abiertas en el área, y la necesidad de considerar todos los aspectos de la afectividad (emociones, estado de ánimo, personalidad) y su influencia en todas las etapas cognitivas. El marco resultante de este trabajo doctoral incluye también el modelado de la conducta y el comportamiento comunicativo, que no habían sido considerados hasta ahora en el modelado de los agentes inteligentes. Estos aspectos colocan al marco resultante entre EBDI los más avanzados de la literatura.
• Se ha diseñado e implementado un marco basado en el BDI para soportar el modelado cognitivo, afectivo y conductual de los agentes inteligentes, denominado ABC-EBDI (Sanchez et al., 2020) (Sánchez et al., 2019). Se trata de la primera aplicación de un modelo psicológico muy conocido, el modelo ABC de Ellis, a la simulación de agentes inteligentes humanos realistas. Esta aplicación implica: o La ampliación del concepto de creencias. En el marco se consideran tres tipos de creencias: creencias básicas, creencias de contexto y comportamientos operantes. Las creencias básicas representan la información general que el agente tiene sobre sí mismo y el entorno. Las conductas operantes permiten modelar la conducta reactiva del agente a través de las conductas aprendidas. Las creencias de contexto, que se representan en forma de cogniciones frías y calientes, se procesan para clasificarlas en creencias irracionales y racionales siguiendo las ideas de Ellis. Es la consideración de creencias irracionales/racionales porque abre la puerta a la simulación de reacciones humanas realistas.
o La posibilidad de gestionar de forma unificada las consecuencias de los acontecimientos en términos de consecuencias afectivas y de comportamiento (conducta). Las creencias de contexto racionales conducen a emociones funcionales y a una conducta adaptativa, mientras que las creencias de contexto irracionales conducen a emociones disfuncionales y a una conducta maladaptativa. Este carácter funcional/disfuncional de las emociones no se había utilizado nunca antes en el contexto del BDI. Además, el modelado conductual se ha ampliado con el modelado de estilos comunicativos, basado en el modelo Satir, tampoco aplicado previamente al modelado de agentes inteligentes. El modelo de Satir considera gestos corporales, expresiones faciales, voz, entonación y estructuras lingüísticas.
• Se ha elegido un caso de uso, "I wish a had better news" para la aplicación del marco propuesto y se han realizado dos tipos de evaluaciones, por parte de expertos y de usuarios. La evaluación ha confirmado el gran potencial del marco propuesto para reproducir un comportamiento humano realista y creíble en situaciones complejas.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados