Ir al contenido

Documat


Resumen de Global geometry of surfaces defined by non-positive and negative at infinity valuations

Carlos Jesús Moreno Ávila

  • español

    Resumen:

    Introducimos los conceptos de no positividad y negatividad en el infinito para valoraciones planas divisoriales de una superficie de Hirzebruch. Probamos que las superficies dadas por valoraciones con las características anteriores poseen interesantes propiedades globales y locales. Además, las valoraciones divisoriales no positivas en el infinito son aquellas valoraciones divisoriales de superficies de Hirzebruch que dan lugar a superficies racionales tales que su cono de curvas está generado por un número mínimo de generadores. Los conceptos de no positividad y negatividad en el infinito también se extienden a valoraciones reales del plano proyectivo y de superficies de Hirzebruch. Por último, calculamos explícitamente las constantes de tipo Seshadri para pares formados por divisores big y valoraciones divisoriales de superficies de Hirzebruch y obtenemos los vértices de los cuerpos de Newton-Okounkov para pares como los anteriores bajo la condición de no positividad en el infinito.

  • English

    Abstract:

    We consider plane divisorial valuations of Hirzebruch surfaces and introduce the concepts of non-positivity and negativity at infinity. We prove that the surfaces given by valuations of the last types have nice global and local geometric properties. Moreover, non-positive at infinity divisorial valuations are those divisorial valuations of Hirzebruch surfaces providing rational surfaces with minimal generated cone of curves. Non-positivity and negativity at infinity are also extended to the class of real valuations of the projective plane and the Hirzebruch surfaces. Finally, we compute the Seshadri-type constants for pairs formed by a big divisor and a divisorial valuation of a Hirzebruch surface and obtain the vertices of the Newton-Okounkov bodies of pairs as above under the non-positivity at infinity property.


Fundación Dialnet

Mi Documat