Ir al contenido

Documat


Clasificación jerárquica multiclase

  • Autores: Daniel Silva Palacios
  • Directores de la Tesis: M. José Ramírez Quintana (dir. tes.) Árbol académico, César Ferri Ramírez (dir. tes.) Árbol académico
  • Lectura: En la Universitat Politècnica de València ( España ) en 2021
  • Idioma: español
  • Tribunal Calificador de la Tesis: J. S. Sanchez (presid.) Árbol académico, Santiago Escobar Román (secret.) Árbol académico, Luis de la Ossa (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • La sociedad moderna se ha visto afectada por los acelerados avances de la tecnología. La aplicación de la inteligencia artificial se puede encontrar en todas partes, desde la televisión inteligente hasta los coches autónomos. Una tarea esencial del aprendizaje automático es la clasificación. A pesar de la cantidad de técnicas y algoritmos de clasificación que existen, es un campo que sigue siendo relevante por todas sus aplicaciones. Así, frente a la clasificación tradicional multiclase en la que a cada instancia se le asigna una única etiqueta de clase, se han propuesto otros métodos como la clasificación jerárquica y la clasificación multietiqueta. Esta tesis tiene como objetivo resolver la clasificación multiclase mediante una descomposición jerárquica. Asimismo, se exploran diferentes métodos de extender la aproximación definida para su aplicación en contextos cambiantes.

      La clasificación jerárquica es una tarea de aprendizaje automático en la que el problema de clasificación original se divide en pequeños subproblemas. Esta división se realiza teniendo en cuenta una estructura jerárquica que representa las relaciones entre las clases objetivo. Como resultado el clasificador jerárquico es a su vez una estructura (un árbol o un grafo) compuesta por clasificadores de base.

      Hasta ahora, en la literatura, la clasificación jerárquica se ha aplicado a dominios jerárquicos, independientemente que la estructura jerárquica sea proporcionada explícitamente o se asume implícita (en cuyo caso se hace necesario inferir primero dicha estructura jerárquica). La clasificación jerárquica ha demostrado un mejor rendimiento en dominios jerárquicos en comparación con la clasificación plana (que no tiene en cuenta la estructura jerárquica del dominio). En esta tesis, proponemos resolver los problemas de clasificación multiclase descomponiéndolo jerárquicamente de acuerdo a una jerarquía de clases inferida por un clasificador plano. Planteamos dos escenarios dependiendo del tipo de clasificador usado en la jerarquía de clasificadores: clasificadores duros (crisp) y clasificadores suaves (soft).

      Por otra parte, un problema de clasificación puede sufrir cambios una vez los modelos han sido entrenados. Un cambio frecuente es la aparición de una nueva clase objetivo. Dado que los clasificadores no han sido entrenados con datos pertenecientes a la nueva clase, no podrán encontrar predicciones correctas para las nuevas instancias, lo que afectará negativamente en el rendimiento de los clasificadores. Este problema se puede resolver mediante dos alternativas: el reentrenamiento de todo el modelo o la adaptación del modelo para responder a esta nueva situación. Como parte del estudio de los algoritmos de clasificación jerárquica se presentan varios métodos para adaptar el modelo a los cambios en las clases objetivo.

      Los métodos y aproximaciones definidas en la tesis se han evaluado experimentalmente con una amplia colección de conjuntos de datos que presentan diferentes características, usando diferentes técnicas de aprendizaje para generar los clasificadores de base.

      En general, los resultados muestran que los métodos propuestos pueden ser una alternativa a métodos tradicionales y otras técnicas presentadas en la literatura para abordar las situaciones específicas planteadas.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno