Jorge Andrés González Zumba
The random nature that characterizes some phenomena in the real-world physical systems (e.g., engineering, biology, economics, finance, epidemiology, and others) has posed the challenge of changing the modeling and analysis paradigm and treat these phenomena as random variables or stochastic processes. Consequently, this novel approach has brought new specificities that the classical theory of modeling and analysis for deterministic dynamical systems cannot cover. Fortunately, stunning contributions made overall in the last century from the mathematics field by scientists such as Kolmogorov, Langevin, Lévy, Itô, Stratonovich, to name a few; have opened avenues for a well-founded study of the dynamics in physical systems perturbed by noise.
In the present thesis, we discuss stochastic differential-algebraic equations (SDAEs) for modeling multi-physical network systems under stochastic disturbances, and their asymptotic stability assessment via Lyapunov exponents (LEs). We focus on d-index-1 SDAEs and their reformulation as ordinary stochastic differential equations (SDEs). Supported by the ergodic theory, it is feasible to analyze the LEs via the random dynamical system (RDSs) generated by the underlying SDEs. Once the existence of well-defined LEs is guaranteed, we proceed to the use of numerical simulation techniques to determine the LEs numerically. Discrete and continuous QR decomposition-based numerical methods are implemented to compute the fundamental solution matrix and use it in the computation of the LEs. Important numerical and computational features of both methods are illustrated through numerical tests. All this investigation concerning systems modeling through SDAEs and their stability assessment via computed LEs finds an appealing engineering application in the dynamic stability assessment of power systems. In this research work, we implement our QR-based numerical methods for testing the dynamic stability in two types of single-machine infinite-bus (SMIB) power system models perturbed by different noisy disturbances. The analysis in small-signal evidences the potential of the proposed techniques in engineering applications.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados