Ir al contenido

Documat


Secuenciación de máquinas con necesidad de ajustes y recursos adicionales

  • Autores: Juan Camilo Yepes Borrero
  • Directores de la Tesis: María Fulgencia Villa Juliá (dir. tes.) Árbol académico, Federico Perea Rojas-Marcos (dir. tes.) Árbol académico
  • Lectura: En la Universitat Politècnica de València ( España ) en 2020
  • Idioma: español
  • Tribunal Calificador de la Tesis: Enriqueta Vercher González (presid.) Árbol académico, Juan José Peiró Ramada (secret.) Árbol académico, Paz Pérez González (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: RiuNet
  • Resumen
    • En esta tesis doctoral se estudia el problema de secuenciación de máquinas paralelas no relacionadas con necesidad de ajustes y recursos adicionales asignados en los ajustes. En este problema, se tiene un grupo de tareas (también llamadas trabajos), donde cada una debe ser procesada en una de las máquinas paralelas disponibles. Para procesar una tarea después de otra en la misma máquina, se debe hacer un ajuste en la máquina. Se asume que estos ajustes deben ser realizados por un recurso adicional limitado (por ejemplo, operarios). En esta tesis doctoral se estudian dos variantes del problema planteado: 1) considerando el problema con el único objetivo de minimizar el tiempo máximo de finalización de todos los trabajos (makespan), y 2) considerando el problema multi-objetivo minimizando simultáneamente el makespan y el consumo máximo de recursos adicionales.

      Inicialmente, se realiza una completa revisión bibliográfica sobre estudios relacionados con el problema planteado. En esta revisión se detecta que, a pesar de existir numerosos estudios de secuenciación de máquinas paralelas, no muchos de estos estudios tienen en cuenta recursos adicionales. Posteriormente, para introducir el problema a estudiar antes de plantear métodos de resolución, se realiza una breve explicación de los principales problemas de secuenciación de máquinas paralelas.

      El problema de un solo objetivo está clasificado como NP-Hard. Por ello, para abordar su resolución se han diseñado e implementado heurísticas y metaheurísticas siguiendo dos enfoques diferentes. Para el primer enfoque, que ignora la información sobre el consumo de recursos adicionales en la fase constructiva, se adaptan dos de los mejores algoritmos existentes en la literatura para el problema de máquinas paralelas con ajustes sin necesidad de recursos adicionales. En el segundo enfoque, que sí tiene en cuenta la información sobre el consumo de recursos adicionales en la fase constructiva, se proponen nuevos algoritmos heurísticos y metaheurísticos para resolver el problema. Tras analizar los resultados de los experimentos computacionales realizados, concluimos que hay diferencias entre los dos enfoques, siendo significativamente mejor el enfoque que tiene en cuenta la información sobre los recursos adicionales.

      Al igual que en el caso de un solo objetivo, la complejidad del problema multi-objetivo obliga a presentar algoritmos heurísticos o metaheurísticos para resolverlo. En esta tesis se presenta un nuevo algoritmo metaheurístico multi-objetivo eficiente para encontrar buenas aproximaciones a la frontera de Pareto del problema. Además, se adaptaron otros tres algoritmos que han mostrado buenos resultados en diferentes estudios de problemas de secuenciación de máquinas multi-objetivo. Después de realizar experimentos computacionales exhaustivos, concluimos que el nuevo algoritmo propuesto en esta tesis es significativamente mejor que los otros tres algoritmos existentes, y que se han adaptado para resolver este problema.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno