Ir al contenido

Documat


Design of real-time multiple object visual detection and tracking systems

  • Autores: Mauro Fernández Sanjurjo
  • Directores de la Tesis: Manuel Mucientes Molina (dir. tes.) Árbol académico, Victor Manuel Brea Sánchez (codir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2021
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: Fernando Vilariño Freire (presid.) Árbol académico, Alberto José Bugarín Diz (secret.) Árbol académico, Marco Balsi (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: MINERVA
  • Resumen
    • Multiple object detection and tracking is one of the main topics in computer vision. The task is to identify all the objects of interest in a frame of a video and to assign an unique ID to those instances that correspond to the same object while it appears in the scene. This is a fundamental task of many video analytics applications like traffic monitoring or video surveillance, which usually requires real-time processing speed and its execution on different hardware devices.

      In this PhD Thesis we address the topic of Real-Time Multiple Object Detection and Tracking Systems, combining state-of-the-art detectors, trackers and data association techniques. Particularly, we focus on the design of Real-Time Multiple Object Detection and Tracking systems for both server architectures and embedded devices, that are able to work with dozens of objects in real-time.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno