Ir al contenido

Documat


Braided Crossed Modules and Loday-Pirashvili category

  • Autores: Alejandro Fernández Fariña
  • Directores de la Tesis: Manuel Ladra González (dir. tes.) Árbol académico
  • Lectura: En la Universidade de Santiago de Compostela ( España ) en 2021
  • Idioma: inglés
  • Tribunal Calificador de la Tesis: José Manuel Casas Mirás (presid.) Árbol académico, María Pilar Carrasco Carrasco (secret.) Árbol académico, Emzar Khmaladze (voc.) Árbol académico
  • Enlaces
    • Tesis en acceso abierto en: MINERVA
  • Resumen
    • This thesis is devoted to the study of braidings in different mathematical contexts, as well as in a deeper analysis of the Loday-Pirashvili category. We will study the notion of braidings for crossed modules and internal categories in the cases of groups, associative algebras, Lie algebras and Leibniz algebras, showing the equivalence between the respective categories. We will also study universal central extensions in the category of braided crossed modules of Lie algebras. Finally, we will show how to generalize the Loday-Pirashvili category. With that construction, we will exhibit a generalization of the relationship between Lie and Leibniz objects.


Fundación Dialnet

Mi Documat

Opciones de tesis

Opciones de compartir

Opciones de entorno